

Support

About

Contact Us

Search

Home > Products > Browse Products > Low Noise Amplifier

Browse Products

Low Noise Amplifier

Wide Band Gain Block

3.0~3.3V Supply Amplifier

Internally Matched IF Amplifier

Wide Band Drive Amplifier

Wide Band Medium Power Amplifier

High Power Amplifier

Wide Band RF Switch

Digital Variable Gain Amplifier

Divider

pHEMT LNA

HBT Bare Die

Power pHEMT Bare Die

Packaged pHEMT

MESFET

Lookup by part number:

Select a part number..

Product Benefits

Advantages

Reflow Soldering Guide

Low Noise Amplifier

Part No.	BW (MHz)	Freq. (MHz)	Gs (dB)	P1 (dBm)	OIP3 (dBm		NF (dB)	Vd (V)	ld (mA)	PKG	Application Note	S-Parameter
		900	22.0	20.5	33.5		0.91					
DI 044	F 4000	1900	17.0	20.5	36.0	5 ID	1.13	5.0	7.5	00700	011_App	DI 044 00D
BL011	5-4000	2140	16.5	20.5	35.5	5dBm	1.17	5.0	75	SOT89	BL011_LTE2600_App	BL011.S2P
		2450	15.5	20.0	38.0		1.30					
		70	26.0	22.0	33.0		1.00					
		900	22.0	22.0	33.5		0.90					
BL022	50-3000	1900	17.0	22.0	36.0	5dBm	0.95	5.0	70	SOT89		BL022.S2P
		2140	16.0	22.0	36.0		1.05					
		2650	14.5	22.0	36.5		1.25					
		900	21.0	17.0	28.0		0.95					
		1900	17.0	17.0	29.0		1.13				081_App	
BL081	5-4000	2140	16.0	16.5	28.0	5dBm	1.15	5.0	25	SOT89	BL081_LTE2600_App	BL081.S2P
		2450	15.5	16.5	28.0		1.25				BL081_3.5G_3.7G_App	
		3500	13.4	18.5	31.1		1.40				_	
		900	20.9	18.8	28.0		0.88					_
		1900	17.1	19.2	30.3		1.00					BL082-3.3V.S2P
		2140	16.2	19.5	30.6		1.08			BL082-	BL082_3.5G_3.7G_App	BL082-5V.S2P
BL082	5-4000	2350	15.6	19.3	31.6	5dBm	1.14	5.0	27	SOT363		_
		2650	14.6	19.0	31.4		1.14					_
		3500	12.5	18.6	29.9		1.30					-
		1900	15.5	22.0	37.0		1.60					BNT01-3.3V.S2P
BNT01	1500-3000	2140	14.5	22.0	37.0	5dBm	1.70	4.4	68	SOT89	BNT01_App	BNT01-4.4V.S2P
		2650	13.0	22.0	36.0		1.80					

Products
Search Products
Browse Products
Product Benefits
Quality
Patents

Support

About
Investors
Management
Career
News
ISO Certifications

Terms Of Trade

Contact Us

Support

About

Contact Us

Search

Home > Products > Browse Products > Wide Band Gain Block

Browse Products

Low Noise Amplifier

Wide Band Gain Block

3.0~3.3V Supply Amplifier

Internally Matched IF Amplifier

Wide Band Drive Amplifier

Wide Band Medium Power Amplifier

High Power Amplifier

Wide Band RF Switch

Digital Variable Gain Amplifier

Divider

pHEMT LNA

HBT Bare Die

Power pHEMT Bare Die

Packaged pHEMT

MESFET

Lookup by part number:

Select a part number..

Product Benefits

Advantages

Reflow Soldering Guide

Wide Band Gain Block

Part No.	BW (MHz)	Freq. (MHz)	Gs (dB)	P1 (dBm)	OIP3/ (dBm)		NF (dB)	Vc (V)	lc (mA)	PKG	Application Note	S-Paramete
		70	22.8	15.9	29.9		4.3					
		500	22.3	15.8	28.0		4.5				-	
	50-4000	900	21.9	16.4	29.5	6dBm	3.9	5.0	48	SOT89		
		1900	20.8	17.3	30.0		4.0					
BG11C		2450	19.9	16.5	28.0		4.2					BG11C.S2
		70	22.3	13.0	25.6		4.1				BG11C_LTE2600_App	
		500	21.8	12.9	23.0		4.4					
	50-4000	900	21.5	13.0	24.0	6dBm	3.8	4.5	35	SOT89		
		1900	20.5	14.3	26.0		3.9					
		2450	19.7	15.0	23.0		4.1					
		70	18.6	20.1	36.5		2.8					
		500	17.5	20.6	38.0		3.0				-	
	50-4000	900	17.1	20.9	37.0	5dBm	2.9	5.0	77	SOT89	-	
		1900	15.0	20.0	34.5		3.1				-	
BG12B		2450	13.9	18.3	33.0		3.2				BG12B_LTE2600_App	BG12B.S2
		70	18.5	18.0	35.0		2.6				_	
		500	17.4	18.3	34.5		2.9					
	50-4000	900	17.0	18.5	34.0	5dBm	2.8	4.5	58	SOT89		
		1900	14.9	18.1	30.5		3.0					
		2450	13.8	17.0	31.0		3.1				_	
		70	21.5	20.0	36.0		2.6					
		500	20.5	21.0	35.5		2.6					
	50-4000	900	20.5	21.0	35.0	7dBm	2.6	5.0	67	SOT89	-	
	30-4000	1900	18.5	20.0	33.0	/ dDill	2.7	3.0	07	30103	_	
		2450	17.5	18.0	31.0		2.8				_	
BG12C		3500	16.1	15.5	27.2		2.8				BG12C_LTE2600_App	BG12C.S2
		70	21.0	18.0	31.0		2.5				BG12C_3.5G_3.7G_App	
		500	20.5	18.0	31.0		2.5				-	
	50-4000	900	20.2	17.5	30.5	7dBm	2.5	4.5	49	SOT89	-	
		1900	18.5	17.5	30.5		2.5				_	
		2450	17.5	16.5	29.0		2.6				-	
		70	13.8	18.4	38.0		8.1					
		120	13.8	18.6	37.5		8.1					
		900	13.5	18.5	37.0		8.1					
	5-6000	1900	13.3	18.5	35.0	7dBm	8.3	5.0	70	SOT89		
	5-6000	2140	13.0	18.5	35.0	/ubiii	8.3	5.0	70	30109		
		2450	12.5	18.5	35.0		8.4				BG13B_App	
BG13B		3500	12.1	17.7	30.0		8.5				_	BG13B.S2
BG 13B		5800	10.8	15.2	26.0		9.4				-	BG 13B.32
		70	13.7	16.0	35.0		8.1				BG13B_LTE2600_App	
		120	13.7	15.9	34.0		8.1				BG13B_3.5G_3.7G_App	
	F 4000	900	13.4	15.8	32.0	7.15	8.1	1.5	50	00700		
	5-4000	1900	13.2	15.9	31.5	7dBm	8.3	4.5	58	SOT89		
		2140	12.9	15.9	31.0		8.3					
		2450	12.5	16.1	32.5	1	8.4					1
		70	26.5	18.8	36.0		4.0					
		900	24.5	19.0	32.0	1	4.0					1
BG13D	5-6000	1900	21.5	19.0	32.0	7dBm	4.2	5.0	65	SOT89		BG13D.S2
		2140	21.4	19.0	31.5		4.3					1
		2450	20.0	19.0	31.5	1	4.5	1			BG13D_App	1

		3500	18.0	17.6	29.5		5.3				-	
		5800	14.0	15.4	26.5		7.5				_	
		70	24.8	14.4	26.0		4.0				BG13D_LTE2600_App	
		900	23.1	14.1	23.0		4.0				BG13D_3.5G_3.7G_App	
	5-4000	1900	20.6	13.8	23.5	7dBm	4.2	4.5	34	SOT89		
		2140	20.5	13.8	23.0		4.3					
		2450	19.3	15.2	23.5		4.5					
		5	16.0	19.0	36.0		5.4					
		70	17.0	19.7	38.5		5.4					
		900	16.7	19.7	37.5		5.5					
	5-6000	1900	16.0	19.7	35.5	9dBm	6.0	5.0	85	SOT89		
		2450	15.4	19.7	34.5		6.3				BG14A_App	
BG14A		3500	14.1	17.9	29.5		7.3				-	BG14A.S2F
D014A		5800	11.7	15.7	25.7		9.2				-	DO 14A.021
		5	15.9	17.2	35.0		5.4				BG14A_LTE2600_App	
		70	16.9	17.9	37.5		5.4				BG14A_3.5G_3.7G_App	
	5-4000	900	16.5	17.4	33.5	9dBm	5.5	4.5	69	SOT89		
		1900	15.9	17.5	32.5		6.0					
		2450	15.3	17.3	32.5		6.3					
		70	17.3	19.5	37.0		5.0					
		120	17.7	19.5	37.0		5.0					
		900	17.0	19.5	36.5		5.0					
	5-6000	1900	16.0	19.5	35.0	9dBm	5.2	5.0	75	SOT89		
		2450	15.2	19.5	33.5		5.5				BG14B_App	
BG14B		3500	14.3	17.6	29.0		7.0				-	BG14B.S2F
		5800	11.9	15.5	25.5		9.5				_	
		70	16.6	17.2	33.0		4.8				BG14B_LTE2600_App	
		120	17.0	17.2	33.0		4.9				BG14B_3.5G_3.7G_App	
	5-4000	900	16.8	16.6	32.0	9dBm	5.0	4.5	58	SOT89		
		1900	15.8	16.7	31.5		5.0					
		2450	15.1	16.8	30.5		5.5					
		70	23.0	18.7	33.0		2.8					
		500	21.5	18.3	33.2		2.9					
		900	21.2	17.8	32.7		2.9				-	
	50-4000	1900	19.2	17.4	31.2	2dBm	2.9	5.0	55	SOT89	_	
		2140	18.7	17.1	30.5		2.9				-	
		2450	18.0	16.7	29.6		3.1				-	
BG15A		3500	16.6	15.3	28.0		3.3				BG15A_LTE2600_App	BG15A.S2P
		70	22.2	14.5	25.3		2.6				BG15A_3.5G_3.7G_App	
		500	20.7	14.6	25.5		2.8				-	
	50 4000	900	20.6	13.9	25.1	0.15	2.8		0.4	00700	-	
	50-4000	1900	18.8	14.4	25.3	2dBm	2.8	4.5	34	SOT89	-	
		2140	18.3	14.5	25.2		2.8				-	
		2450 3500	17.5 16.3	14.8	25.0 25.4		3.0				-	
		70	20.2	17.8	31.0		4.5				-	
		120	18.9	17.3	31.0		4.5					
		900	17.0	16.1	28.5		4.5					
	5-4000	1900	16.0	15.2	27.0	3dBm	4.6	5.0	40	SOT89		
		2140	15.7	15.5	28.0		4.6					
		2450	15.3	15.0	27.5		4.7				BG16C_App	
BG16C		70	19.4	13.3	23.5		4.5				BG16C_LTE2600_App	BG16C.S2P
		120	18.1	12.8	23.5		4.5					
		900	16.3	11.8	22.0	1	4.6					
	5-4000	1900	15.4	12.0	20.0	3dBm	4.5	4.5	29	SOT89		
		2140	15.2	12.2	22.0	1	4.6					
		2450	14.8	13.0	22.0	1	4.7					
		70	21.0	18.3	37.0		4.7					
	F 400-	120	20.3	18.9	37.0		4.7		0.5	00=		B04=1 =:-
	5-4000		10.0	19.2	35.0	5dBm	4.8	5.0	65	SOT89		BG17A.S2P
BG17A		900	18.8									

		2140	16.8	19.0	32.5		4.9					
		2450	16.2	18.0	31.0		4.9				BG17A_App	
		3500	14.8	16.1	28.6		5.5				-	
		70	20.6	15.0	31.0		4.7				BG17A_LTE2600_App	
		120	19.9	15.6	31.0		4.7				BG17A_3.5G_3.7G_App	
		900	18.5	15.3	29.0		4.8					
	5-4000	1900	16.7	16.1	29.0	5dBm	4.9	4.5	45	SOT89		
		2140	16.5	15.9	28.5		4.9					
		2450	16.0	17.0	27.5		4.9					
		70	20.4	17.8	34.0		3.8					
		120	19.3	18.5	33.5		3.8					
		900	17.8	17.5	31.0		3.9					
	5-6000	1900	16.4	17.0	30.0	2dBm	4.0	5.0	55	SOT89		
		2450	15.6	16.1	29.0		4.0				BG17C_App	
BG17C		5800	11.0	12.3	24.5		6.6				_	BG17C.S2F
		70	19.5	13.6	27.5		3.8				BG17C_LTE2600_App	
		120	18.6	14.3	27.0		3.8					
	5-4000	900	17.4	14.3	24.5	2dBm	3.9	4.5	37	SOT89		
		1900	15.9	13.7	24.5	1	4.0					
		2450	15.3	12.7	24.0		4.0					
		70	17.5	18.0	36.0		4.2					
		500	16.0	18.7	37.5		4.2					
		900	15.5	19.1	36.0		4.2					
	50-4000	1900	15.0	18.9	32.5	7dBm	4.2	5.0	70	SOT89		
		2100	14.7	18.7	31.5		4.2					
		2450	14.3	17.8	30.5		4.4					
BG18A		70	17.3	16.9	33.5		4.2				BG18A_LTE2600_App	BG18A.S2F
		500	15.9	16.4	33.0		4.2				BG16A_LTE2000_App	
							_					
	50-4000	900	15.4	16.8	32.5	7dBm	4.2	4.5	57	SOT89		
		1900	14.9	17.1	30.5		4.2					
		2100	14.6	17.4	30.5		4.2					
		2450	14.2	16.2	29.0		4.4					
		70	22.0	18.0	35.0		3.6					
		500	20.7	18.8	35.0		3.6					
	50 4000	900	20.3	19.0	34.0	7.10	3.4	- 0	70	00700		
	50-4000	1900	18.5	18.9	31.5	7dBm	3.2	5.0	72	SOT89		
		2100	_	18.6	31.0		3.4					
DOLOD		2450	17.5	17.8	30.5		3.4				DC40D Ame	D040D 005
BG18B		3500	15.1	15.8	27.0		4.6				BG18B_App	BG18B.S2F
		70	21.7	14.1	31.5		3.6				BG18B_LTE2600_App	
		500	20.5	16.8	32.0		3.6				BG18B_3.5G_3.7G_App	
	50-4000	900	20.1	16.5	30.5	7dBm	3.4	4.5	53	SOT89		
		1900	18.4	16.2	29.5		3.2					
		2100	18.1	16.8	30.5		3.4					
		2450	17.4	15.7	29.0		3.4					
		70	23.5	19.0	35.0		3.8					
		500	22.4	20.0	36.0		3.8					
	50-4000	900	22.2	20.1	35.5	7dBm	3.6	5.0	73	SOT89		
		1900	20.9	18.8	32.5		3.7					
		2100	20.6	18.3	31.5		3.7					
BG18C		2450	19.9	17.3	32.0		3.9				BG18C_App	BG18C.S2F
		70	23.1	17.3	32.0		3.8				BG18C_LTE2600_App	
		500	22.2	17.2	32.0		3.8					
	50-4000	900	21.9	16.7	31.0	7dBm	3.6	4.5	52	SOT89		
		1900	20.7	16.8	30.0		3.7					
		2100	20.5	17.2	29.5		3.7					
		2450	19.8	15.4	29.0		3.9					
		500	24.3	19.5	36.0		4.2					
BG18D	50-4000	900	24.1	19.5	35.0	7dBm	4.2	5.0	83	SOT89	BG18D_App	BG18D.S2F
		1900	22.2	19.0	32.0		4.3				BG18D_LTE2600_App	

Support

About

Contact Us

Search

Home > Products > Browse Products > 3.0~3.3V Supply Amplifier

Browse Products

Low Noise Amplifier

Wide Band Gain Block

3.0~3.3V Supply Amplifier

Internally Matched IF Amplifier

Wide Band Drive Amplifier

Wide Band Medium Power Amplifier

High Power Amplifier

Wide Band RF Switch

Digital Variable Gain Amplifier

Divider

pHEMT LNA

HBT Bare Die

Power pHEMT Bare Die

Packaged pHEMT

MESFET

Lookup by part number:

Select a part number..

Product Benefits

Advantages

Reflow Soldering Guide

3.0~3.3V Supply Amplifier

Part No.	BW (MHz)	Freq. (MHz)	Gs (dB)	P1 (dBm)	OIP3 (dBm	/tone n)	NF (dB)	Vc (V)	Ic (mA)	PKG	Application Note	S-Parameter
		70	25.3	16.7	27.0		3.0				BGS1_LTE2600_App	
		900	21.8	16.0	26.0		2.9				BGS1_3.5G_3.7G_App	
	==	1900	18.4	13.9	24.9		3.0					
BGS1	50-4000	2140	17.6	13.3	24.0	0dBm	3.0	3.2	26	SOT363		BGS1.S2P
		2450	16.3	12.3	23.8		3.3					
		3500	14.9	9.9	19.2		3.0					
		70	26.5	15.4	31.0		2.7				BGS2_LTE2600_App	
		900	23.2	13.1	24.8		2.3				BGS2_3.5G_3.7G_App	
D000	==	1900	19.1	12.1	23.4		2.2			007000		D000 00D
BGS2	50-4000	2140	18.3	11.7	23.1	0dBm	2.2	3.0	34	SOT363		BGS2.S2P
		2450	17.3	10.6	22.5		2.3					
		3500	15.0	8.7	19.2		2.7					
		30	28.8	16.0	30.0		1.9					
		70	28.0	16.7	30.5		1.8					
		900	25.4	17.4	30.5		1.7				BGS3_3.5G_3.7G_App	
DOCO	20, 4000	1900	21.6	16.9	30.5	040	1.8	20	50	COTACA		DOCC COD
BGS3	30-4000	2140	20.8	16.0	29.0	0dBm	1.9	3.0	52	SOT363		BGS3.S2P
		2450	20.0	16.0	28.5		1.9					
		2650	19.5	15.9	28.5		2.0					
		3500	18.0	14.5	27.2		2.0					
		70	24.7	20.4	31.0		2.2					
		500	22.0	20.3	28.0		2.6					
		900	19.7	19.9	28.0		2.1				BGS4_3.5G_3.7G_App	
BGS4	50~4000	1900	14.2	18.8	30.0	-3dBm	2.1	3.3	26	SOT363		BGS4.S2P
		2140	13.2	19.0	29.5		2.2					
		2450	11.1	19.0	30.0		2.3					
		3500	10.3	18.9	30.8		2.6					
		40	19.0	15.0	32.5		2.2					
		70	17.3	15.5	32.5		2.2					
		900	16.5	16.2	31.5		2.5				BGS5_3.5G_3.7G_App	
BGS5	40-4000	1900	15.0	15.4	28.5	0dBm	2.7	3.0	55	SOT363		BGS5.S2P
Вооо	40 4000	2140	14.6	15.0	28.0	OGDIII	2.8	0.0	00	001000		D000.021
		2450	14.1	14.4	27.0		2.9					
		2650	13.8	14.5	27.0		3.0					
		3500	13.3	13.7	24.6		2.7					
		400	23.3	16.5	26.0		3.0					
		900	21.8	17.0	26.0		2.9				BGS6_3.5G_3.7G_App	
BGS6	50-4000	1900	18.0	14.0	26.0	0dBm	3.0	3.3	27	SOT343		BGS6.S2P
		2450	16.2	12.5	24.0		3.3					
		2650		12.0	23.0		3.5					
		1900	15.5	22.0	37.0		1.6					
		2140		22.0	37.0	5dBm	1.7	4.4	68	SOT89		
BNT01	1500-3000	2650	13.0	22.0	36.0		1.8				BNT01_App	BNT01-3.3V.S
		1900		19.5	35.5		1.6					BNT01-4.4V.S
		2140	14.0	20.0	36.0	3dBm	1.6	3.3	47	SOT89		
		2650	12.5	20.0	35.0		1.7					

Search

Products Support About Contact Us

Home > Products > Browse Products > Internally Matched IF Amplifier

Browse Products

Low Noise Amplifier

Wide Band Gain Block

3.0~3.3V Supply Amplifier

Internally Matched IF Amplifier

Wide Band Drive Amplifier

Wide Band Medium Power Amplifier

High Power Amplifier

Wide Band RF Switch

Digital Variable Gain Amplifier

Divider

pHEMT LNA

HBT Bare Die

Power pHEMT Bare Die

Packaged pHEMT

MESFET

Lookup by part number:

Select a part number..

Product Benefits

Advantages

Reflow Soldering Guide

Internally Matched IF Amplifier

Part No.	BW (MHz)	Freq. (MHz)	Gs (dB)	P1 (dBm)	OIP3/ (dBm)		NF (dB)	Vc (V)	Ic (mA)	PKG	Application Note	S-Paramete
		70	24.0	20.5	39.0		3.4					
	5-800	140	23.9	20.5	37.0	10dBm	3.4	5.0	90	SOT89		
	3-000	250	23.7	20.5	37.0	Toubin	3.5	3.0	30	30103		
BG20A		500	23.1	20.5	36.0		3.6				BG20A_App	BG20A.S2F
DOZUA		70	23.8	18.3	33.5		3.4				Богол_Арр	B020A.021
	5-800	140	23.7	18.3	31.0	10dBm	3.4	4.5	64	SOT89		
	3-000	250	23.5	18.3	32.0	Toubin	3.5		04	30103		
		500	22.9	18.3	32.0		3.6					
		70	22.0	21.0	41.0		4.6					
	5-800	140	21.9	21.0	39.5	13dBm	4.7	5.0	105	SOT89		
	3-000	250	21.7	21.0	38.5	ISUDIII	4.7	3.0	103	30109		
BG20B		500	21.0	21.0	36.0		4.8				BG20B_App	BG20B.S2F
BG20B		70	21.8	19.8	34.0		4.6				БО20Б_Арр	BG20B.32F
	5-800	140	21.8	19.3	37.0	13dBm	4.7	4.5	79	SOT89		
	3-000	250	21.6	19.2	35.5	ISUDIII	4.7	4.5	15	30109		
		500	20.9	19.6	33.5		4.8					
		70	15.2	20.0	44.0		4.2					
		140	15.2	20.8	42.0		4.3					
	50-800	250	15.1	20.9	40.5	10dBm	4.3	5.0	105	SOT89		
		500	15.0	21.0	40.0		4.4					
DIE		800	15.0	20.7	37.5		4.5				DIE4 Avv	DIE4 COD
BIF1		70	15.1	18.6	42.4		4.2				BIF1_App	BIF1.S2P
		140	15.1	19.3	42.0		4.3					
	50-800	250	15.0	19.4	38.0	10dBm	4.3	4.5	79	SOT89		
		500	14.9	19.3	38.0		4.4					
		800	14.9	19.4	36.0		4.5					
		70	20.3	23.5	43.0		5.1					
		140	20.2	24.5	41.5		5.2					
	50-800	250	19.9	24.5	40.5	8dBm	5.2	5.0	85	SOT89		
		500	19.0	24.2	40.5		5.3					
		800	17.9	24.0	39.5		5.3					
BIF3		70	20.2	22.1	34.5		5.1				BIF3_App	BIF3.S2P
		140	20.2	23.0	37.5		5.2					
	50-800	250	19.8	23.1	34.5	8dBm	5.2	4.5	54	SOT89		
		500	18.7	22.6	35.5		5.3					
		800	17.5	22.2	34.5		5.3					
		70	17.5	20.5	43.0		4.0					
		140	17.5	20.5	42.5		4.1					
	50-1200	250	17.5	20.5	41.0	10dBm	4.2	5.0	107	SOT89		
		500	17.5	21.0	40.0		4.3					
BIF5		70	17.4	19.2	40.0		4.0				BIF5_APP	BIF5.S2P
		140	17.4	19.0	41.0		4.1	1				
	50-1200	250	17.5	19.2	38.5	10dBm	4.2	4.5	85	SOT89		
		500	17.4	19.4	36.5		4.3					
		70	27.0	21.0	40.0		2.9					
		140	27.0	21.5	38.5		2.9	-				
	50-1200	250	26.5	21.5	38.0	10dBm	3.0	5.0	95	SOT89		
BIF7		500	25.5	21.0	36.0		3.0	-			BIF7_APP	BIF7.S2P
		70	26.7	18.8	34.5		2.9					
	50-1200	70	20.1	10.0	54.5	10dBm	2.5	4.5	67	SOT89		

	1			1	1	1	1	1		1		1
		250	26.2	19.5	33.0		3.0					
		500	25.1	19.6	31.5		3.0					
		70	15.6	20.3	40.0		3.3					
	50-600	140	15.8	20.7	41.5	8dBm	3.3	5.0	83	SOT89		
	30-000	200	15.9	20.9	40.1	OUDIII	3.3	3.0	03	30109		
BIG2		500	15.9	20.0	38.2		3.2				BIG2_APP	BIG2.S2P
ыог		70	15.6	18.6	38.0		3.2				BIGZ_AFF	BIG2.32F
	50-600	140	15.7	18.8	38.5	8dBm	3.2	4.5	68	SOT89		
	30-000	200	15.8	18.9	37.5	OUDIII	3.1	4.5	00	30109		
		500	15.8	18.6	35.5		3.1					
		70	20.9	21.0	40.5		2.7					
	50-600	140	20.7	20.6	41.0	8dBm	2.9	5.0	85	SOT89		
	50-600	200	20.2	20.4	41.0	OUDIII	3.0	5.0	65	30169		
BIG4		500	19.5	20.3	41.3		3.1				BIG4 APP	BIG4.S2P
ыо4		70	20.8	19.3	38.9		2.6				BIG4_AFF	BIG4.32F
	50-600	140	20.5	19.1	39.1	8dBm	2.8	4.5	69	SOT89		
	50-600	200	20.0	18.9	39.0	OUDIII	2.9	4.5	69	30169		
		500	19.2	18.8	39.0		3.0					
		70	27.0	20.7	40.5		2.7					
	50-600	140	27.1	21.0	40.2	8dBm	2.9	5.0	94	SOT89		
	50-600	200	26.9	21.0	39.0	OUDIII	3.0	5.0	94	30169		
BIG8		500	26.0	20.2	41.6		3.2				BIG8 APP	BIG8.S2P
ыч		70	26.7	19.1	34.8		2.8				DIGO_AFP	DIG0.32P
	50-600	140	26.7	19.2	34.9	8dBm	2.8	4.5	66	SOT89		
	50-600	200	26.5	19.1	33.7	oubiii	2.8	4.5	00	30189		
		500	25.7	18.4	34.5		2.9					

Products
Search Products
Browse Products
Product Benefits
Quality
Patents

Support

About
Investors
Management
Career
News
ISO Certifications
Terms Of Trade

Contact Us Search

Support

About

Contact Us

Search

Home > Products > Browse Products > Wide Band Drive Amplifier

Browse Products

Low Noise Amplifier

Wide Band Gain Block

3.0~3.3V Supply Amplifier

Internally Matched IF Amplifier

Wide Band Drive Amplifier

Wide Band Medium Power Amplifier

High Power Amplifier

Wide Band RF Switch

Digital Variable Gain Amplifier

Divider

pHEMT LNA

HBT Bare Die

Power pHEMT Bare Die

Packaged pHEMT

MESFET

Lookup by part number:

Select a part number..

Product Benefits

Advantages

Reflow Soldering Guide

Wide Band Drive Amplifier

Part No.	BW (MHz)	Freq. (MHz)	Gs (dB)	P1 (dBm)	OIP3 (dBm		NF (dB)	Vc (V)	Ic (mA)	PKG	Application Note	S-Parameter
		70	24.5	23.0	38.0		4.6				BT05AG_App	
BT05AG	5-4000	900	20.8	22.4	37.0	10dBm	4.5	5.0	85	SOT89	BT05AG_738_793_App	BT05AG.S2P
BIUSAG	5-4000	1900	16.3	19.5	40.0	TUGBIN	4.4	5.0	85	50189	-	B105AG.52P
		2450	14.3	23.0	37.5		4.3				-	
		70	23.4	24.2	39.5		4.6				BT05CV_App	
		900	21.5	23.9	43.5		4.4				BT05CV_738_793_App	
BT05CV	5-4000	1900	17.5	23.6	42.0	9dBm	4.2	5.0	85	SOT89	BT05CV_LTE2600_App	BT05CV.S2P
		2450	15.0	24.1	40.5		4.3				BT05CV_3.5G_3.7G_App	
		3500	12.3	23.1	40.0		5.4				-	
		1900	18.0	22.5	39.0		4.6					
BT05VG	1500-4000	2100	16.5	22.5	39.0	10dBm	5.0	5.0	85	SOT89	BT05VG_App	BT05VG.S2P
		2450	15.0	23.5	39.0		4.6				-	
		1900	19.0	22.7	40.5		3.9				BT05VG2_App	
BT05VG2	1500-4000	2100	18.0	22.0	38.0	11dBm	4.0	5.0	88	SOT89	BT05VG2_LTE2600_App	BT05VG2.S2F
		2450	16.5	23.2	38.0		4.2				BT05VG2_3.5G_3.7G_App	

Products
Search Products
Browse Products
Product Benefits
Quality

Patents

Support

About
Investors
Management
Career
News
ISO Certifications

Terms Of Trade

Contact Us

Support

About

Contact Us

Search

Home > Products > Browse Products > Wide Band Medium Power Amplifier

Browse Products

Low Noise Amplifier

Wide Band Gain Block

3.0~3.3V Supply Amplifier

Internally Matched IF Amplifier

Wide Band Drive Amplifier

Wide Band Medium Power Amplifier

High Power Amplifier

Wide Band RF Switch

Digital Variable Gain Amplifier

Divider

pHEMT LNA

HBT Bare Die

Power pHEMT Bare Die

Packaged pHEMT

MESFET

Lookup by part number:

Select a part number..

Product Benefits

Advantages

Reflow Soldering Guide

Wide Band Medium Power Amplifier

Part No.	BW (MHz)	Freq. (MHz)	Gs (dB)	P1 (dBm)	OIP3 (dBm		NF (dB)	Vc (V)	Ic (mA)	PKG	Application Note	S-Parameter
		70	25.0	24.5	39.0		3.7					
		170	25.0	25.5	40.0		3.8					
		240	24.8	25.0	40.0		3.9				BT09AG_App	
BT09AG	5-4000	500	23.0	24.5	41.5	14dBm	3.8	5.0	160	SOT89	BT09AG_738_793_App	BT09AG.S2F
		900	20.0	24.5	42.0		4.2				BT09AG_LTE2600_App	
		1900	14.5	24.2	42.0		4.2					
		2450	12.5	26.0	42.0		4.3					
		900	21.5	24.5	39.0		3.7				BT09VG_App	
DTOOMO	F 4000					40.10			400	COTOO	BT09VG_738_793_App	DT00VC CO
BT09VG	5-4000	1900	15.5	25.5	41.0	13dBm	4.0	5.0	160	SOT89	BT09VG_LTE2600_App	BT09VG.S2F
		2450	13.5	27.0	41.5		4.7				BT09VG_3.5G_3.7G_App	
		900	22.8	25.8	40.5		4.3				-	
		1900	18.7	25.2	37.0		4.4				BT09E_App	
BT09E	500-4000	2140	17.7	25.2	37.0	10dBm	4.5	5.0	85	SOT89	BT09E_OIP3_App	BT09E.S2P
		2650	16.1	25.1	36.5		4.7				-	
		3500	13.7	24.9	36.5		5.1				-	
		1900	15.0	27.5	45.0		6.8				BT013_App	
BT013	1500-4000	2140	14.0	27.2	45.0	13dBm	6.8	5.0	135	SOT89	BT013_LTE2600_App	BT013.S2P
		2400	13.2	27.0	43.0		6.8				BT013_3.5G_3.7G_App	

Products
Search Products
Browse Products
Product Benefits
Quality

Patents

Support

About
Investors
Management
Career
News
ISO Certifications

Terms Of Trade

Contact Us

Products Support

About

Contact Us

Search

Home > Products > Browse Products > High Power Amplifier

Browse Products

Low Noise Amplifier

Wide Band Gain Block

3.0~3.3V Supply Amplifier

Internally Matched IF Amplifier

Wide Band Drive Amplifier

Wide Band Medium Power Amplifier

High Power Amplifier

Wide Band RF Switch

Digital Variable Gain Amplifier

Divider

pHEMT LNA

HBT Bare Die

Power pHEMT Bare Die

Packaged pHEMT

MESFET

Lookup by part number:

Select a part number..

Product Benefits

Advantages

Reflow Soldering Guide

High Power Amplifier

Part No.	BW (MHz)	Freq. (MHz)	Gs (dB)	P1 (dBm)	OIP3/ (dBm		NF (dB)	Vc (V)	Ic (mA)	PKG	Application Note	S-Parameter
		900	18.5	29.5	49.0		8.5				BT301_APP	
		1900	12.5	30.3	49.0		8.6				BT301_3.5GApp	
BT301	500-4000	2100	11.5	30.3	47.0	16dBm	7.5	5.0	350	SOIC8		BT301.S2P
		2400	10.5	30.3	49.0		7.5					
		3500	7.6	27.9	42.5		7.3					
		900	19.8	32.0	49.0		4.8				BT331_App	
		1900	14.0	33.2	52.0		5.0				BT331_738_793_App	
BT331	700-2700	2140	13.2	32.6	52.0	20dBm	5.0	5.0	410	SOIC8	BT331_3.5GApp	BT331.S2P
		2600	12.1	31.2	47.0		5.4					
		3500	10.7	29.5	45.8		6.2					
		200	25.7	31.8	43.0		8.6				BT33L_App	-
BT33L	000 4000	540	23.4	32.4	47.5	00.10	6.5		400	QFN		BT33L.S2P
BIJJL	200-1000	700	22.0	33.0	48.5	20dBm	6.8	5.0	400	4x4		_
		900	21.3	32.7	47.5		6.8					-
		1700	27.8	32.4	50.0		5.8					-
		1800	27.4	32.4	50.0		5.3				BMT321_App	BMT321.S2
BMT321	1500-2800	1900	27.0	32.5	50.0	17dBm	5.0	5.0	376	QFN 3x3		-
		2140	26.0	32.4	50.0		5.2			OAG		_
		2650	23.8	32.0	50.0		5.0					-
		850	33.7	33.8	50.0		6.9				BMT332_App	
		1750	28.0	33.5	49.0		6.0				BMT332_738_793_App	
DMT222	700 0400	1850	27.3	33.3	48.0	00 dD	6.0	- 0	000	QFN	BMT332_500mA_App	DMT222 C2
BMT332	700-2400	1960	26.7	33.1	48.0	23dBm	5.6	5.0	680	5x5		BMT332.S2
		2140	26.0	33.1	47.0		5.5					
		2350	24.0	33.1	48.0		5.4					
		1800	29.7	32.9	45.1		5.9					
DMT222	1900 2700	2350	27.4	34.1	50.0	23dBm	5.3	E 0	EE0	QFN	DMT222 App	DMT222 C2
BMT333	1800-2700	2550	26.2	33.3	48.3	ZSUDIII	5.0	5.0	550	5x5	BMT333_App	BMT333.S2
		2650	25.5	33.5	48.2		5.1					
BT301 Ar	t work inform	ation				BT331 A	Art work	c infor	mation			
BT301_S	OIC8_900MI	Hz_Rev1				BT331_	SOIC8	9001	/IHz_Re	v1		
BT301_S	OIC8_1900N	IHz_Rev	1			BT331_	SOIC8	_1900	MHz_R	lev1		
BT301_S	OIC8_2140N	IHz_Rev	1			BT331_	SOIC8	_2140	MHz_R	lev1		
BT301_S	OIC8_2450N	IHz_Rev	1			BT331_	SOIC8	2450	MHz_R	lev1		
BMT332	Art work infor	mation				BMT333	3 Art wo	ork info	ormatio	n		
BMT332_	QFN_850MI	lz_Rev2				BMT333	QFN	_1800	MHz_R	ev1		
BMT332_	QFN_1750N	IHz_Rev	2			BMT333	QFN	2350	MHz_R	ev1		
BMT332_	QFN_1850N	IHz_Rev	2			BMT333	QFN	2550	MHz_R	ev1		
BMT332_	QFN_1960N	IHz_Rev	2			BMT333	_QFN	_2650	MHz_R	ev1		
BMT332_	QFN_2140N	IHz_Rev	2			-						
BMT332	QFN_2350N	IHz_Rev	2									

Products
Search Products
Browse Products
Product Benefits
Quality
Patents

Support

About
Investors
Management
Career
News
ISO Certifications
Terms Of Trade

Contact Us

Products Support About Contact Us Search

Home > Products > Browse Products > Digital Variable Gain Amplifier

Browse Products

Low Noise Amplifier

Wide Band Gain Block

3.0~3.3V Supply Amplifier

Internally Matched IF Amplifier

Wide Band Drive Amplifier

Wide Band Medium Power Amplifier

High Power Amplifier

Wide Band RF Switch

Digital Variable Gain Amplifier

Divider

pHEMT LNA

HBT Bare Die

Power pHEMT Bare Die

Packaged pHEMT

MESFET

Lookup by part number:

Select a part number..

Product Benefits

Advantages

Reflow Soldering Guide

Digital Variable Gain Amplifier

Part No.	Freq. (MHz)	Gain(dB) at 1900MHz	OP1dB(dBm) at 1900MHz	OIP3(dBm) at 1900MHz	ATT Range/ Step Size(dB)	Control Interface	Vc(V)	Icc(mA)	NF(dB)	PKG
BVA303	30-4000	21.0	16.0	30.0	31.5 / 0.5	Serial/Parallel	3.0	54	2.9	QFN 4x4
BVA304	50-4000	12.3	19.3	31.5	31.5 / 0.5	Serial/Parallel	3.3	26	3.6	QFN 4x4
BVA305	40-4000	14.0	14.8	29.0	31.5 / 0.5	Serial/Parallel	3.0	54	4.1	QFN 4x4
BVA518	5-4000	19.1	18.6	32.2	31.5 / 0.5	Serial/Parallel	5.0	73	5.8	QFN 4x4
BVA2140	700-4000	30.2	25.1	40.0	31.5 / 0.5	Serial	5.0	150	2.9	QFN 4x4
#. DVGA E	Evaluation (Software								
#. DVGA l	Jser Manua	ıl								

Search Products **Browse Products Product Benefits** Quality

Products

Patents

Support

About Investors Management Career News ISO Certifications

Terms Of Trade

Contact Us

Support

About

Contact Us

Search

Home > Products > Browse Products > Divider

Browse Products

Low Noise Amplifier

Wide Band Gain Block

3.0~3.3V Supply Amplifier

Internally Matched IF Amplifier

Wide Band Drive Amplifier

Wide Band Medium Power Amplifier

High Power Amplifier

Wide Band RF Switch

Digital Variable Gain Amplifier

Divider

pHEMT LNA

HBT Bare Die

Power pHEMT Bare Die

Packaged pHEMT

MESFET

Lookup by part number:

Select a part number..

Product Benefits

Advantages

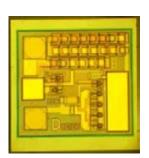
Reflow Soldering Guide

Dividers

Part No.	BW(MHz)	Freq. (MHz)	I/L (dB)	Iso. (dB)	Phas Diff.	e	Ampli Diff.	tude	*Solder	*PKG	Application Note	Impedanc
		750	0.49	20.2	0.5		0.02					
		850	0.49	28.3	0.5	Deg	0.02	dB	with			
DDOOD		950	0.58	20.1	0.6		0.03			00100		
BD09B	700-1000 Cellular, GSM900	750	0.5	20.6	0.2		0.01			SOIC8		50 Ohm
		850	0.52	27	0.2	Deg	0.01	dB	without			
		950	0.59	19.5	0.4		0.01					
		750	0.55	22	0.2		0.01					
BD0926	700-1000 Cellular,GSM900	850	0.57	31.4	0.2	Deg	0.01	dB	without	SOT26		50 Ohm
		950	0.63	19	0.4		0.01					
		1700	0.35	20.4	0.2		0.03					
		1900	0.38	24.4	0.3	Deg	0.04	dB	with			
BD19B	4700 0000 DOC MCDMA	2075	0.47	30.1	0.5		0.06			SOIC8		50 Ohm
витяв	1700-2300 PCS, WCDMA	1700	0.38	20	1		0.06			30108		50 Onm
		1900	0.43	24.1	1	Deg	0.06	dB	without			
		2075	0.54	25.4	0.9		0.05					
		1700	0.51	20.1	1.4		0.04					
BD1926	1700-2300 PCS, WCDMA	1900	0.55	24.8	1.5	Deg	0.07	dB	without	ut SOT26		50 Ohm
		2075	0.63	21.6	1.5		0.06					
		1900	0.38	18.7	0.1		0.03					
		2075	0.39	21.6	0.2	Deg	0.04	dB	with			
BD23B	1900-2500 PCS, WCDMA,	2350	0.46	28.5	0.5		0.06			SOIC8		50 Ohm
BD23B	WiBro, TD-SCDMA	1900	0.36	19.2	1.7		0.07			30108		30 Onin
		2075	0.38	22.2	1.7	Deg	0.06	dB	without			
		2350	0.49	25.8	1.7		0.06					
		1900	0.58	23.3	0.7		0.03					
BD2326	1900-2500 PCS, WCDMA, WiBro, TD-SCDMA	2075	0.59	27.5	0.7	Deg	0.04	dB	without	SOT26		50 Ohm
		2350	0.69	19.5	0.6		0.06					
		1800	0.38	20.8	0.2		0.07					
		2075	0.42	25.7	0.4	Deg	0.09	dB	with			
BD25B	1700-2500 PCS, PCS, USPCS, WCDMA, WiBro,	2350	0.6	22.2	0.7		0.12			SOIC8		50 Ohm
BDZOB	TD-SCDMA	1800	0.41	21.1	1.5		0.08			00.00		30 011111
		2075	0.49	26.3	1.7	Deg	0.11	dB	without			
		2350	0.75	19	1.7		0.1					
		2400	0.61	23.3	0.75		0.07					
		2500	0.59	25.1	0.75		0.07					
BD2626	2400-2900 WCDMA,WiBro,LTE	2650	0.61	28.2	0.75	Deg	0.07	dB	without	SOT26		50 Ohm
		2800	0.66	25.8	0.75		0.09					
		2900	0.64	22	0.75		0.09					

Products
Search Products
Browse Products
Product Benefits
Quality
Patents

Support


About Investors Management Career News

ISO Certifications Terms Of Trade **Contact Us**

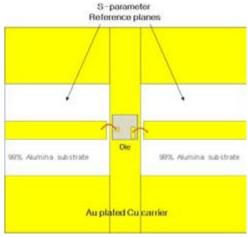
5-4000 MHz Cascadeable InGaP HBT Gain Block

Device Features

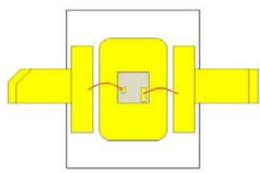
- 33 dBm Output IP3 at 5dBm/tone
- 24.9 dB Gain at 900 MHz
- 18 dBm P1dB
- Highly Reliable InGaP/GaAs HBT Technology
- 50 ohm Cascadeable
- Application: commercial wireless system

Target Device Performance $(T_a = 25^{\circ}C)$

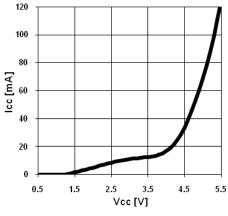
Symbols	Test Conditions	Min	Тур	Max	Unit
Frequency Range		5		4000	MHz
	900 MHz	23.9	24.9	25.9	
Gain	1900 MHz	22.0	23.0	24.0	dB
	2450 MHz	20.6	21.6	22.6	
	900 MHz		-11.7		
S11	1900 MHz		-10.4		dB
	2450 MHz		-11.9		
	900 MHz		-7.6		
S22	1900 MHz		-13.4		dB
	2450 MHz		-12.0		
	900 MHz	31.0	33.0		
OIP3	1900 MHz	30.7	32.7		dBm
	2450 MHz	29.5	31.5		
	900 MHz	17.3	18.3		
P1dB	1900 MHz	17.2	18.2		dBm
	2450 MHz	16.4	17.4		
Ic	Vc = 5.0V	59	69	79	mA
Vc			5.0		V
dG/dT			-0.007		dB/°C
Rth	Thermal Resistance		85		°C/W

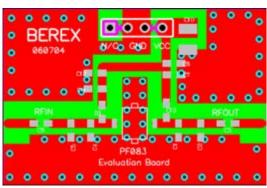

Test conditions unless otherwise noted.

- 1. Device performance is measured on BeRex evaluation board at 25C, 50 ohm system
- 2. OIP3 measured with two tones at an output power of 5 dBm/tone separated by 1 MHz.


Absolute Maximum Ratings

Parameter	Rating
Operating Case temperature	-40 to +85°C
Storage Temperature	-40 to +155°C
Operating Voltage	+5.5V
Supply Current	150 mA
Input RF Power	23dBm


Operation of this device above any of these parameters may result in permanent damage.


S-parameter test circuit

Chip attachment on PF083

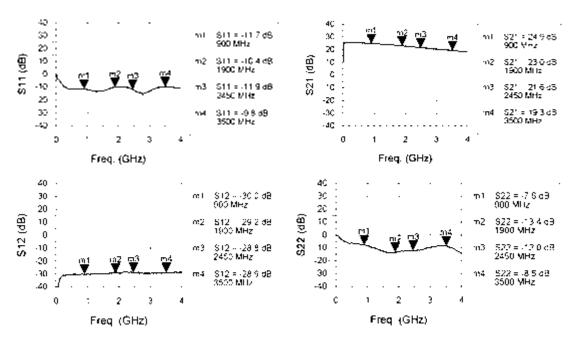
I-V characteristics

Generic PF083 Evaluation Board (31mil thick FR4)

Application Circuit: 5-4000 MHz

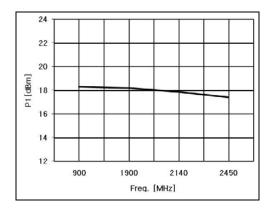
Typical Performance (Vc = 5V, Ic = 69mA, T = 25°C)

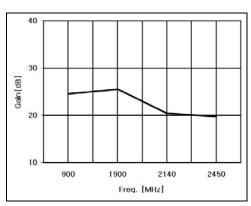
Freq	MHz	900	1900	2450
S21	dB	24.9	23.0	22.5
S11	dB	-11.7	-10.4	-11.9
S22	dB	-7.6	-13.4	-12.0
P1	dBm	19.0	19.0	19.0
OIP3	dBm	32.0	32.0	31.0


Schematic Diagram		BOM	Tolerance
C3 C4 C5 +5V	C1	100pF	±5%
u1€ † † †	C2	100pF	±5%
= = =	C3	100pF	±5%
RFin C1 C2 RFout BCHG13D	C4	1000pF	±5%
	C5	10uF	±20%
name and the same	L1*	39nH	5%

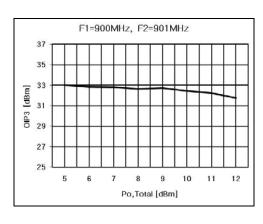
*Note:

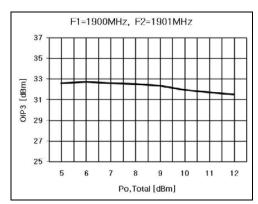
- 1. Chip is mounted on the PF083 open PKG, and bonded with 2-wires at both input and output.
- 2. Less than 20nH improves RF performance at frequencies over 1.9GHz.
- 3. 40nH or higher value L1 improves RF performance at frequencies under 500MHz.
- 4. Optimum value of L1 may vary with board design.

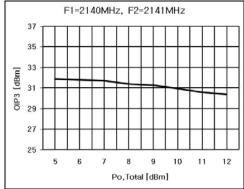

Typical Device Data

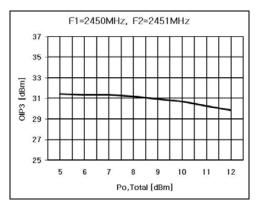

S-parameters (Vc=5V, Ic=65mA, T=25°C)

Device Performance

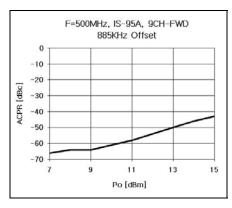

P1dB-Gain

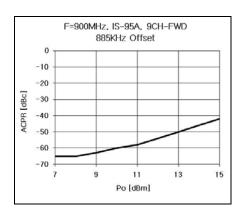


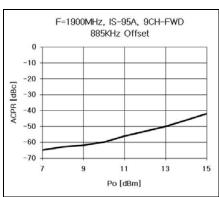


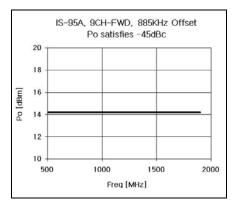

P1 Gain

OIP3

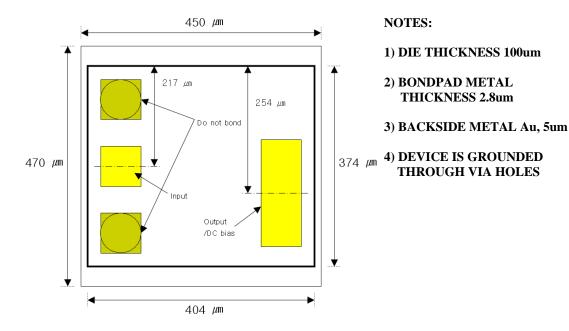








ACPR


S-Parameter

(Vdevice = 5.0V, Icc = 69mA, T = 25 °C, calibrated to device leads)

Freq [MHz]	S11 [dB]	S11 [Ang]	S21 [dB]	S21 [Ang]	S12 [dB]	S12 [Ang]	S22 [dB]	S22 [Ang]
100	-4.678	-25.54	25.672	176.84	-35.909	77.16	-1.418	173.59
500	-11.610	-16.90	25.427	159.35	-30.250	-25.07	-6.267	29.56
1000	-12.057	-12.98	24.828	141.93	-29.445	50.31	-8.236	-7.08
1500	-13.053	16.38	23.968	124.40	-30.025	-114.05	-12.494	-26.17
2000	-9.849	17.27	22.767	109.52	-29.185	-159.59	-12.806	-17.49
2500	-12.146	-27.86	21.639	96.24	-28.649	158.92	-11.873	-64.24
3000	-13.490	-123.12	20.413	84.08	-29.741	116.90	-9.756	-130.88
3500	-9.805	-167.89	19.346	73.06	-28.948	77.73	-8.579	-170.03
4000	-11.035	-160.29	18.256	63.61	-24.947	32.85	-14.089	-165.34

^{*} Note: S-parameter includes 1 mil thick and 16-mil long Au wire

Die Outline

ESD Rating

ESD Rating: Class 1C Value: Passes <2000V

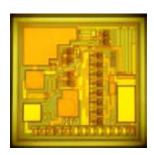
Test: Human Body Model (HBM)
Standard: JEDEC Standard JESD22-A114B

NATO CAGE code:

|--|

NOTICE

BeRex Corporation reserves the right to make changes of product specification or to discontinue product at any time without notice.



Proper ESD procedures should be followed when handling this device.

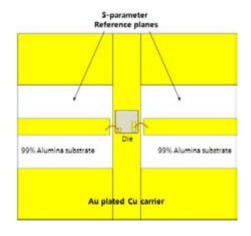
50-800 MHz Internally Matched IF Amplifier

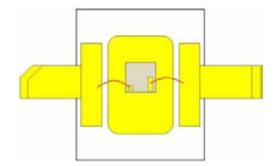
Device Features

- 40 dBm Output IP3 at 70MHz, 14dBm/tone
- 27.0 dB Gain at 70MHz
- 21.0 dBm P1dB at 70 MHz
- Highly Reliable InGaP/GaAs HBT Technology
- Patented over voltage protection circuit
- Application: commercial wireless system

Target Device Performance $(T_a = 25^{\circ}C)$

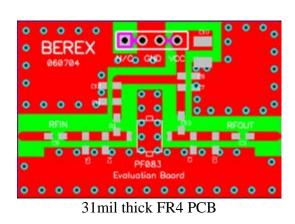
Symbols	Parameters Test Conditions	Min	Тур	Max	Unit	
	70MHz	26.0	27.0			
Gain	140MHz	25.8	26.8		-dr	
Gain	250MHz	25.	26.7		dB	
	500MHz	24.9 25.9				
	70MHz		-30.8			
S11	140MHz		-32.4		dB	
511	250MHz		-29.4		uБ	
	500MHz		-27.8			
S22	70MHz		-12.5			
	140MHz		-12.5		dB	
	250MHz		-11.6			
	500MHz		-8.6			
	70MHz	39.2	41.2			
OIP3	140MHz	38.5	40.8		dBm	
OIF3	250MHz	41.6	43.6		UDIII	
	500MHz	39.4	41.4			
	70MHz	20.3	21.3			
P1dB	140MHz	20.8	21.8		dBm	
PIGB	250MHz	20.7	21.7		ubili	
	500MHz	19.2	20.2			
Ic	Vc = 5.0V	85	95	105	mA	
Vc			5.0		V	
dG/dT			-0.003		°C	
Rth	Thermal Resistance		50		°C/W	

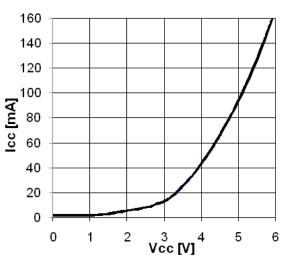

Test conditions unless otherwise noted.


- 1. Device performance is measured on BeRex evaluation board at 25°C , 50 ohm system.
- 2. OIP3 is measured on an eval-board with two tones separated by 1 MHz.

Absolute Maximum Ratings

Parameter	Rating
Operating Case temperature	-40 to +85°C
Storage Temperature	-40 to +155°C
Supply Voltage	6.0V
Max. Device Current	160mA
Input RF Power	23dBm


Operation of this device above any of these parameters may result in permanent damage.

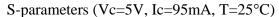


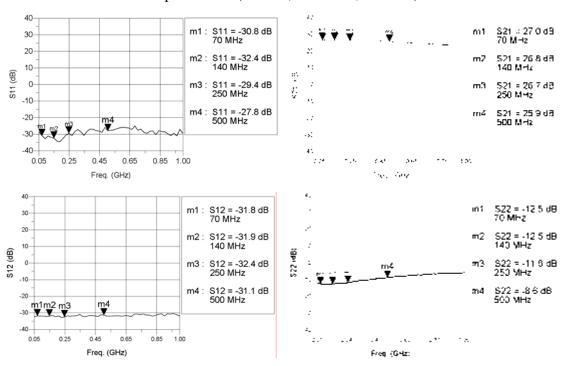
S-parameter test circuit

Chip attachment on PF083

Generic PF083 Evaluation Board

I-V Characteristics

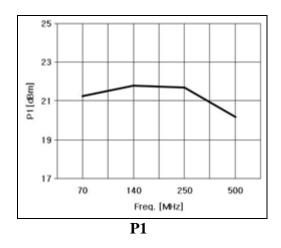

Application Circuit: 50-800 MHz


Typical Performance (Vdevice = 5V, Ic = 95 mA, $Ta = 25^{\circ}C$)

Freq	MHz	70	140	250	500
S21	dB	27.0	26.8	26.7	25.9
S11	dB	-30.8	-32.4	-29.4	-27.8
S22	dB	-12.5	-12.5	-11.6	-8.64
P1	dBm	21.3	21.8	21.7	20.2
OIP3	dBm	41.2	40.8	43.6	41.4

Schematic Diagram]	BOM	Tolerance
C3 C4 C5 +5V	C1	100nF *100pF	± 5%
L1 \(\begin{picture}(100,0) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	C2	100nF *100pF	± 5%
	C3	100pF	± 5%
RFin C1 C2 RFout BCHIF7	C4	1000pF	± 5%
	C5	10uF	± 20%
	L1	1uH *12nH	±5%
*Application for RF Bandwidth			

Typical Device Data

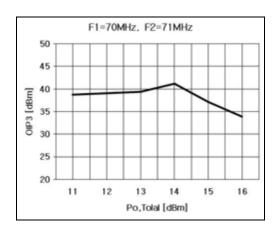

IF Bandwidth Application

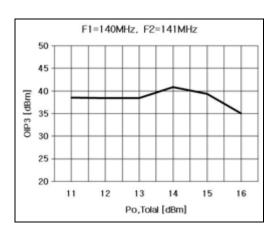
S-parameters (Vc=5V, Ic=95mA, T=25°C) in1 S11 = -9 8 dB 500 MHz m1 S21 = 26 7 dB 500 MHz 4 m2 S11 = -13 0 dB 700 MHz S21 = 26 7 dB 700 MHz ¶ : m3 | S11 = -14 6dB | 900 MHz m3 | \$21 = 26 0 d9 900 MHz m4 | \$21 = 23.7 d9 1400 MHz m4 | \$11 = -20 9 dB 1400 MHz a) Take Take The The Control (1.8) The Table 1911 Carlo 1901 (1901 1901 79 6 700 Free Costs n/2 | \$10 - 30 5 dB | /00 MHz \$27 = -14 3 dB 700 MHz m3 | \$12 = -30 5 c 8 900 MHz m3 | \$22 = .14 4 dB | 900 MHz m4 510 - 25 5 68 1400 MHz \$22 = -8 0 d9 1400 M:tz

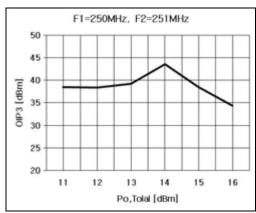
RF Bandwidth Application

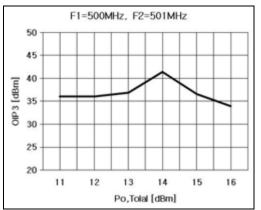
Device Performance

P1dB-Gain


. Open to the are agent early


 $\sigma_{\rm qm} = \sigma_{\rm corr}$



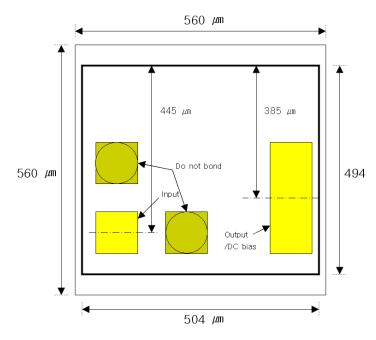

Carlo Company of the State of the

OIP3

S-Parameter

IF Bandwidth Application (Vc=5V, Ic=95mA, T=25°C)

Freq [MHz]	S11 [dB]	S11 [Ang]	S21 [dB]	S21 [Ang]	S12 [dB]	S12 [Ang]	S22 [dB]	S22 [Ang]
50	-28.586	-106.642	27.021	176.006	-32.384	2.863	-12.028	22.476
150	-32.368	153.226	26.801	156.233	-31.914	-7.256	-12.467	-21.072
250	-29.436	103.952	26.672	135.931	-32.394	-13.069	-11.622	-41.718
350	-30.806	74.122	26.319	119.315	-30.952	-23.766	-10.324	-58.0256
450	-28025	57.612	26.102	102.363	-31.721	-36.896	-9.144	-72.792
550	-27.358	39.511	25.497	850.096	-31.882	-41.929	-8.246	58.005
650	-26.156	34.536	25.184	69.233	-31.562	-51.528	-7.420	-94.494
750	-28.741	16.783	24.699	56.366	-30.987	-55.955	-6.775	102.541
850	-28.388	26.499	23.915	36.370	-30.922	-65.779	-6.329	-113.462


^{*} Note: S-parameter includes 1 mil thick and 16-mil long Au wire

RF Bandwidth Application (Vc=5V, Ic=95mA, T=25°C)

Freq [MHz]	S11 [dB]	S11 [Ang]	S21 [dB]	S21 [Ang]	S12 [dB]	S12 [Ang]	S22 [dB]	S22 [Ang]
500	-9.933	-62.036	26.655	140.862	-32.054	5.690	-6.741	95.975
600	-11.592	-69.083	27.012	114.561	-30.891	-10.142	-10.421	66.190
700	-12.970	-75.467	26.862	90.690	-30.452	-21.447	-14.326	28.112
800	-13.821	-81.199	26.486	70.988	-31.196	-39.664	-16.186	-31.310
900	-14.577	-89.643	26.003	51.737	-30.634	-47.501	-14.438	-74.036
1000	-15.849	-105.713	25.350	31.493	-29.676	-65.002	-11.274	-101.616
1100	-16.947	-116.273	25.174	17.566	-29.279	-73.650	-9.931	-115.456
1200	-18.847	-127.822	24.486	3.151	-29.542	-89.241	-8.173	-139.546
1300	-19.853	-145.186	23.909	-13.503	-29.542	-89.241	-8.173	-139.546
1400	-20.891	-168.828	23.719	-27.530	-28.848	-96.767	-7.982	-149.506
1500	-22.903	162.772	23.175	-42.466	-28.517	-107.766	-7.466	-156.464

^{*} Note: S-parameter includes 1 mil thick and 16-mil long Au wire

Die Outline

NOTES:

- 1) DIE THICKNESS 100um
- 2) BONDPAD METAL THICKNESS 2.8um
- 3) BACKSIDE METAL Au, 5um
- 4) DEVICE IS GROUNDED THROUGH VIA HOLES

ESD Rating

ESD Rating Class 1C **Value** Passes <2000V

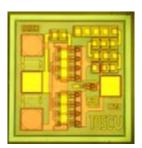
Test Human Body Model (HBM)
Standard JEDEC Standard JESD22-A114B

NATO CAGE code:

2 N	9	6	F
-----	---	---	---

NOTICE

BeRex Corporation reserves the right to make changes of product specification or to discontinue product at any time without notice.



Proper ESD procedures should be followed when handling this device.

5-4000 MHz Wideband Drive Amplifier

Device Features

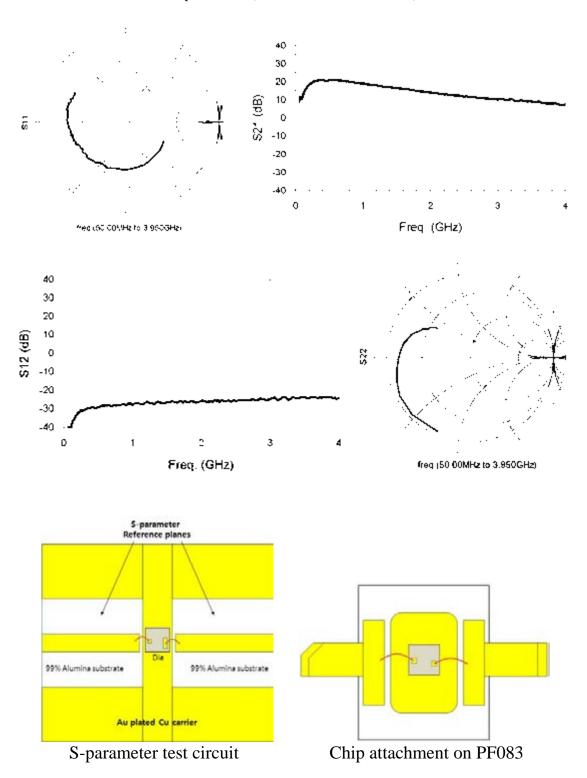
- 43.5 dBm Output IP3 at 9dBm/tone
- 22 dB Gain at 900MHz
- 24 dBm P1dB at 2450 MHz
- Highly Reliable InGaP/GaAs HBT Technology
- Application: commercial wireless system

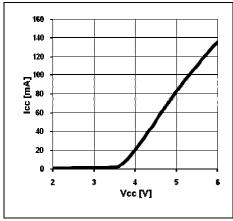
Target Device Performance $(T_a = 25^{\circ}C)$

Symbols	Parameters Test Conditions	Min	Тур	Max	Unit
J ======	900MHz		21.7		
Cain		20.7		22.7	αr
Gain	1900MHz	16.6	17.6	18.6	dB
	2450MHz	14.3	15.3	16.3	
G44	900MHz		-18.6		150
S11	1900MHz		-15.3		dB
	2450MHz		-17.2		
	900MHz		-15.1		
S22	1900MHz		-39.7		dB
	2450MHz		-15.3		
	900MHz	41.6	43.6		
OIP3	1900MHz	41.3	42.3		dBm
	2450MHz	39.7	40.7		
	900MHz	23.0	24.0		
P1dB	1900MHz	22.8	23.8		dBm
	2450MHz	23.2	24.2		
IC OF CIL D	900MHz		16.0		
IS-95 CH Power	1900MHz		16.0		dBm
@-45dBc ACPR	2450MHz		16.5		
	900MHz		4.4		
NF	1900MHz		4.2		dB
	2450MHz		4.3		
Ic	Vc = 5.0V	77	87	97	mA
Vc			5.0		V
Rth	Thermal Resistance		50		°C/W

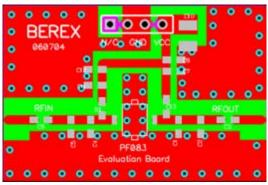
Test conditions unless otherwise noted.

- 1. Device performance is measured on BeRex evaluation board at 25C, 50 ohm system
- 2. OIP3 is measured on an eval-board with two tones separated by 1 MHz.


Absolute Maximum Ratings


Parameter	Rating
Operating Case temperature	-40 to +85°C
Storage Temperature	-55 to +155°C
Supply Voltage	6.5V
Max. Device Current	180mA
Input RF Power	23dBm

Operation of this device above any of these parameters may result in permanent damage.

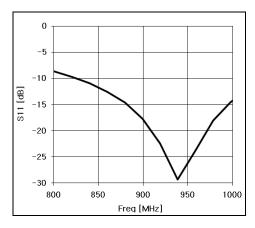

Typical Device Data

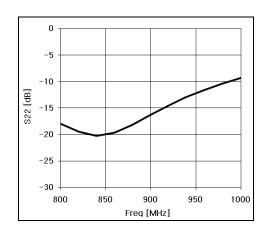
S-parameters (Vc=5V, Ic=87mA, T=25°C)

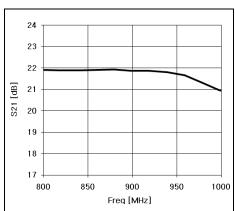
I-V characteristics

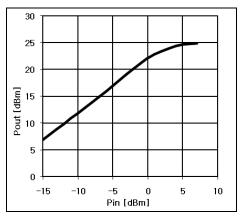
Generic PF083 Evaluation Board (31mil thick FR4)

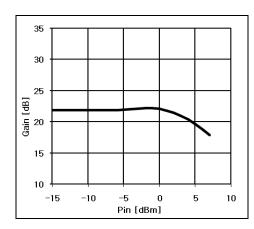
S-Parameter (5V/87mA)

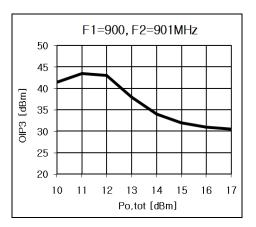

			(-		-,			
Freq	S11	S11	S12	S12	S21	S21	S22	S22
[MHz]	[Mag]	[Ang]	[Mag]	[Ang]	[Mag]	[Ang]	[Mag]	[Ang]
100	0.465	-48.427	0.010	85.919	3.827	-99.799	0.929	-153.159
500	0.645	-128.468	0.034	7.967	9.952	141.528	0.602	144.177
1000	0.690	-171.254	0.045	-48.963	8.810	48.139	0.315	148.430
1500	0.748	159.059	0.051	-102.372	6.588	-24.785	0.376	144.485
2000	0.778	141.185	0.053	-144.526	4.794	-81.488	0.455	138.017
2500	0.748	138.006	0.055	172.951	3.889	-135.293	0.418	142.841
3000	0.841	142.443	0.059	130.929	3.046	176.260	0.541	154.681
3500	0.934	139.011	0.056	84.638	2.464	127.419	0.638	149.921
4000	0.899	132.888	0.067	40.623	2.301	75.436	0.591	143.868

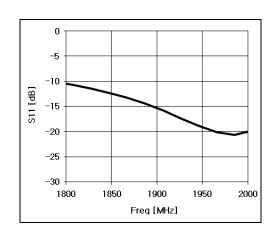

^{*} Note: S-parameter includes 1 mil thick and 16-mil long Au wire

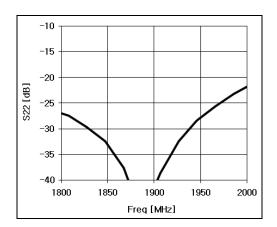

Application Circuit: 900 MHz

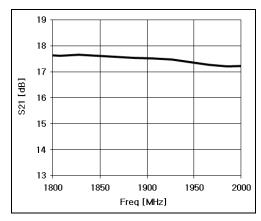

Schematic Diagram		BOM	Tolerance
C4 C5 C6 +5V	C1	100pF	± 5%
	C2	6.8pF	±5%
L2 \bigg\	C3	100pF	± 5%
	C4	100pF	± 5%
RFin C1 L1 C3 RFout	C5	1000pF	± 10%
	C6	10uF	±10%
C2=	L1	2nH	±5%
	L2	12nH	± 5%

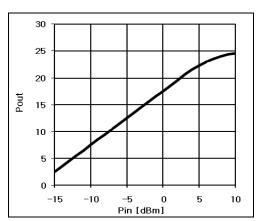

Typical Performance

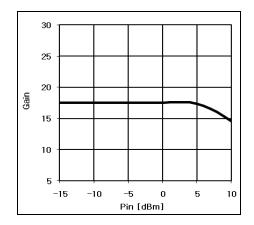


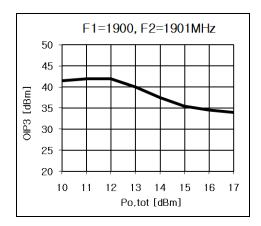


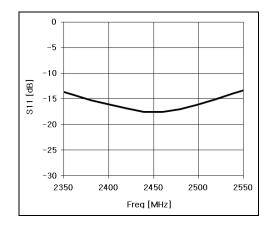


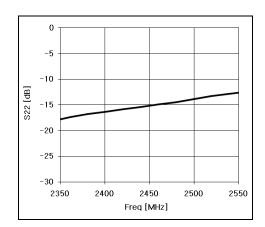

Application Circuit: 1900 MHz

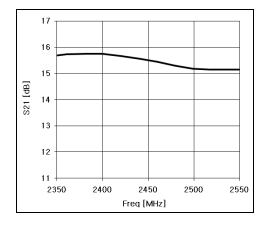

Schematic Diagram		BOM	Tolerance	
C5 C6 C7 +5V	C1	100pF	± 5%	
<u> </u> <u> </u> <u> </u>	C2	2pF	±5%	
12 M T T	C3	1.2pF	±5%	
	C4	100pF	± 5%	
RFin C1 L1 C4 RFout	C5	100pF	± 5%	
BCHT05CV WW	C6	1000pF	± 10%	
Q = G	C7	10uF	±10%	
	L1	1.8nH	±5%	
↑ ↑ Ť	L2	6.8nH	± 5%	

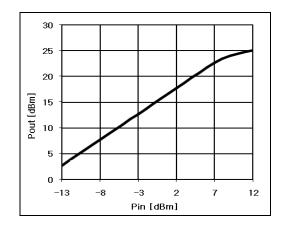

Typical Performance

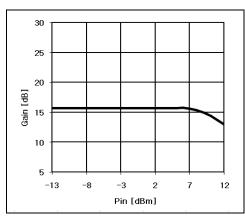


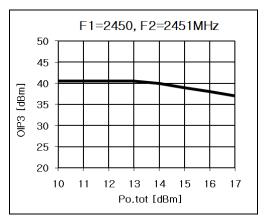


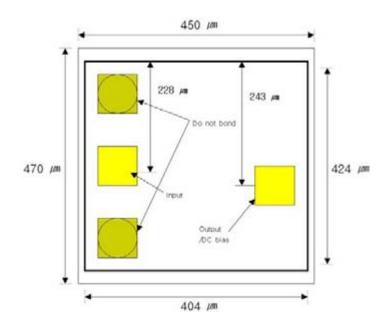



Application Circuit: 2450MHz


Schematic Diagram		ВОМ	Tolerance
C5 C6 C7 +5	V C1	1.5pF	±5%
<u> </u>	C2	1.8pF	±5%
12 E T T T	C3	0.8pF	±5%
= = =	C4	100pF	± 5%
RFin C1 L1 C4 RFou	C5	100pF	± 5%
BCHTOSCV ////	C6	1000pF	± 10%
Q	C7	10uF	± 10%
T T	L1	1nH	±5%
- − − − − − − − − − − − − − − − − − − −	L2	6.8nH	±5%


Typical Performance





Die Outline

NOTES:

- 1) DIE THICKNESS 100um
- 2) BONDPAD METAL THICKNESS 2.8um
- 3) BACKSIDE METAL Au, 5um
- 4) DEVICE IS GROUNDED THROUGH VIA HOLES

http://www.berex.com

ESD Rating

ESD Rating Class 1B **Value** Passes <1000V

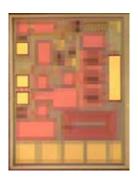
Test Human Body Model (HBM)
Standard JEDEC Standard JESD22-A114B

NATO CAGE code:

2 N 9 6 F

NOTICE

BeRex Corporation reserves the right to make changes of product specification or to discontinue product at any time without notice.


Proper ESD procedures should be followed when handling this device.

BeRex **BCT013**

1500-4000 MHz Medium Power Amplifier

Device Features

- 45.0 dBm Output IP3 at 13dBm/tone
- 15.0 dB Gain at 1900MHz
- 27.5 dBm P1dB at 1900 MHz
- Patented Over Voltage Protection Circuit
- •Application: commercial

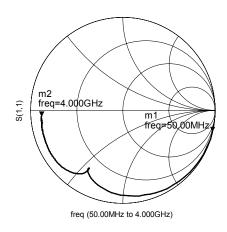
Target Device Performance $(T_a = 25^{\circ}C)$

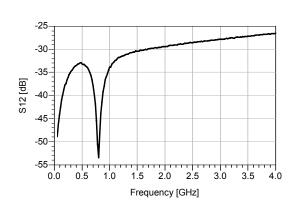
Symbols	Parameters Test Conditions	Min	Тур	Max	Unit
	1900MHz	14.0	15.1		
Gain	2140MHz	13.0	14.0		аD
Gain	2400MHz	12.2	13.3		dB
	3500MHz	9.7	10.7		
	1900MHz		-17.3		
S11	2140MHz		-12.0		dB
311	2400MHz		-12.8		uБ
	3500MHz		-25.3		
	1900MHz		-12.8		
S22	2140MHz		-12.0		dB
522	2400MHz		-12.9		uБ
	3500MHz		-25.3		
	1900MHz	42	45.0		
OIP3	2140MHz	42	45.2		dBm
OH 3	2400MHz	40	43.1		ubili
	3500MHz	37	40.2		
	1900MHz	26.5	27.5		
P1dB	2140MHz	26.2	27.1		dBm
TIUD	2400MHz	26.0	27.2		abin
	3500MHz	25.0	25.9		
	1900MHz				
\mathbf{NF}	2140MHz		6.8		dB
TVE	2400MHz		0.6		uБ
	3500MHz				
Ic	Vc = 5.0V	118	138	158	mA
Vc			5.0		V
Rth	Thermal Resistance		50		°C/W

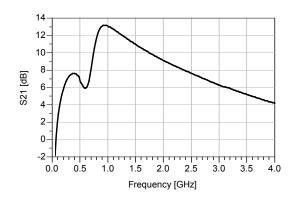
Test conditions unless otherwise noted.

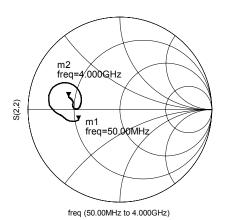
- T = 25°C, Vdevice = 5.0V, 50 ohm system.
 OIP3 is measured on an eval-board with two tones separated by 1 MHz.

Confidential http://www.berex.com

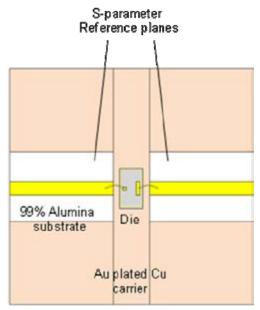

BeRex **BCT013**

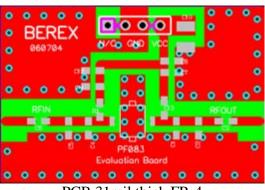

Absolute Maximum Ratings


Parameter	Rating
Operating Case temperature	-40 to +85°C
Storage Temperature	-40 to +155°C
Junction Temperature	+250°C
Supply Voltage	7 V
Input RF Power	23dBm

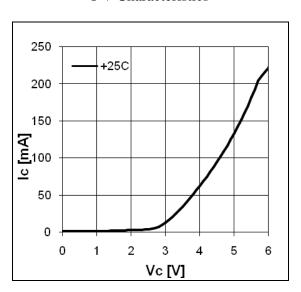

Operation of this device above any of these parameters may result in permanent damage.

Typical Device Data S-parameters (Vc=5V, Ic=138mA, T=25°C)





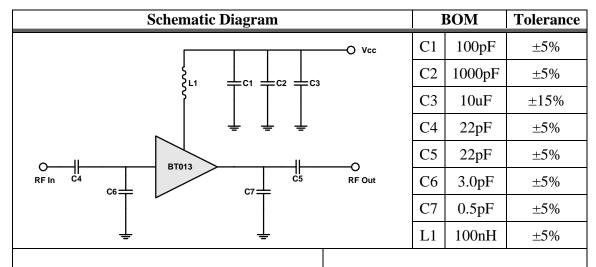
BeRex **BCT013**

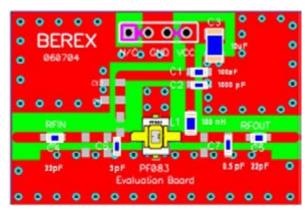

S-parameter test circuit

Generic PF083 Evaluation Board

PCB 31mil thick FR-4

I-V Characteristics

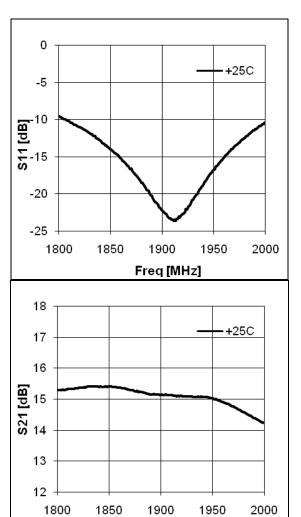

• Current drop in between 5~6V is due to patented protection circuit.


Confidential http://www.berex.com

S-Parameter (5V/135mA)

			(2	V/133111	· - /			
Freq [MHz]	S11 [Mag]	S11 [Ang]	S21 [Mag]	S21 [Ang]	S12 [Mag]	S12 [Ang]	S22 [Mag]	S22 [Ang]
100	-0.046	-30.149	2.219	-128.4	-41.958	66.107	-3.497	165.97
500	-0.952	-116.77	6.737	-174.18	-32.703	25.318	-3.457	162.64
1000	-1.111	-162.01	13.26	161.56	-32.513	76.255	-7.557	117.5
1500	-0.928	157.99	10.718	121.35	-30.171	46.516	-7.780	127.17
2000	-1.240	129.31	9.181	101.55	-28.599	42.527	-7.262	116.25
2500	-1.390	104.6	8.334	81.201	-26.76	37.808	-7.180	97.537
3000	-1.669	82.694	6.491	66.725	-26.706	32.623	-7.38	74.648
3500	-1.989	60.455	6.124	51.795	-25.792	26.141	-7.336	50.666
4000	-2.281	37.752	5.024	33.795	-24.653	20.698	-6.823	32.131

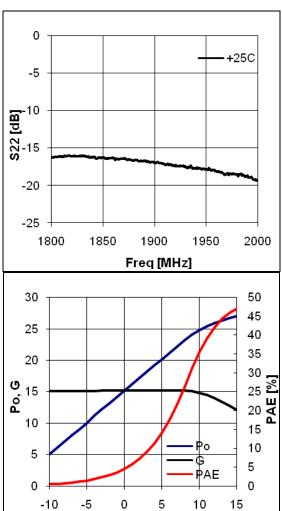
Application Circuit: 1900 MHz



Note:

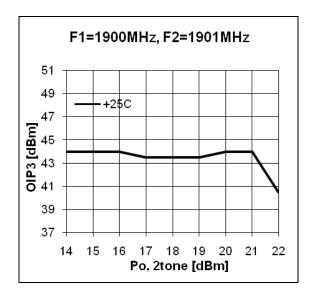
- 1. Chip is mounted on the PF083 open PKG, and bonded with 2-wires at both input and output.
- 2. PCB: 31mil thick FR4
- 3. Distance between the center of the shunt cap(C6) and the input pin of BT013 is 3.2mm
- 4. Distance between the center of the shunt cap(C7) and the output pin of BT03 is 8.3mm

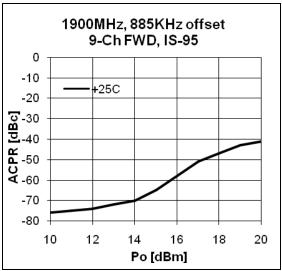
Typical Performance

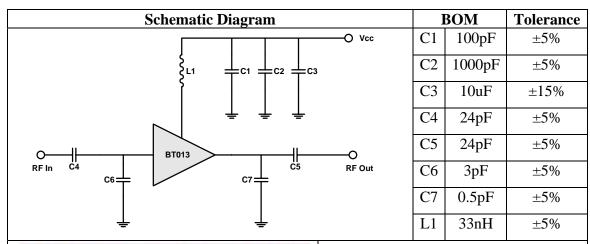

1800

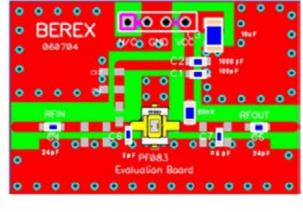
1850

1950

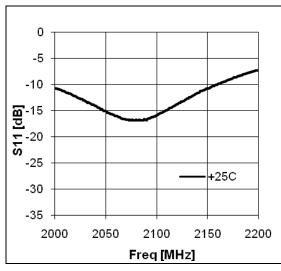

Freq [MHz]

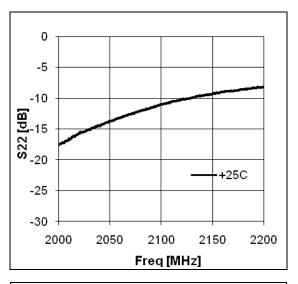

2000

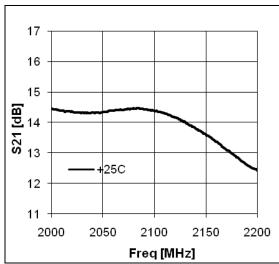

Pin [dBm]

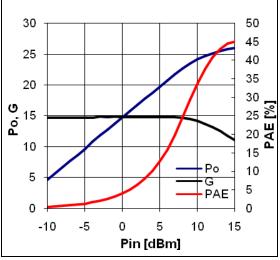

Confidential http://www.berex.com

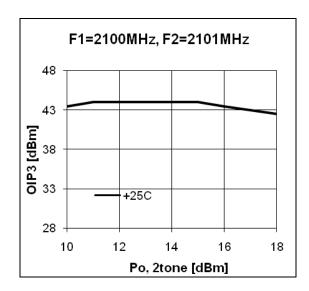
Application Circuit: 2100 MHz

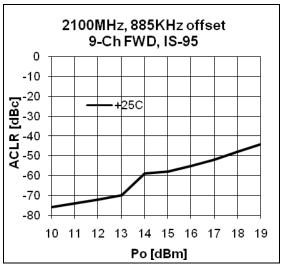


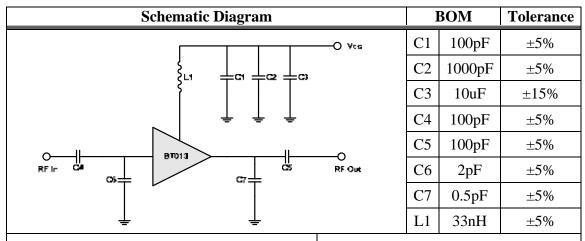


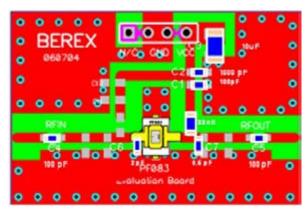

Note:


- 1. Chip is mounted on the PF083 open PKG, and bonded with 2-wires at Both input and output.
- 2. PCB: 31mil thick FR4
- 3. Distance between the center of the shunt cap(C6) and the input pin of BT013 is 1.5mm
- 4. Distance between the center of the shunt cap(C7) and the output pin of BT03 is 6.4mm

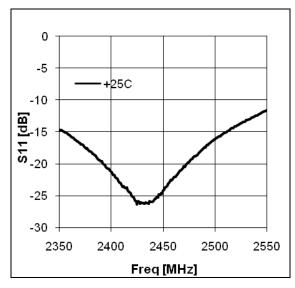

Typical Performance

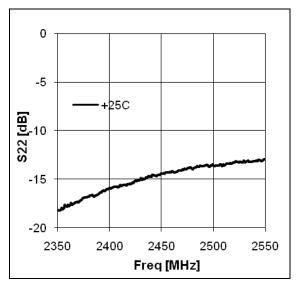


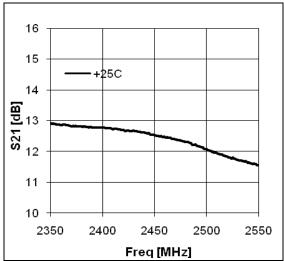


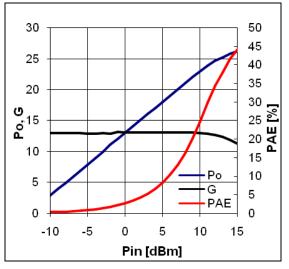


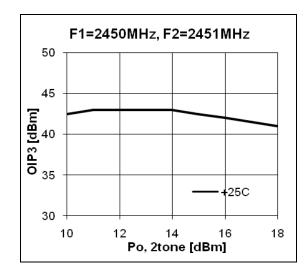
Application Circuit: 2400MHz

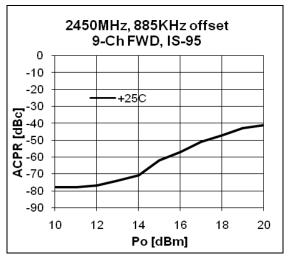


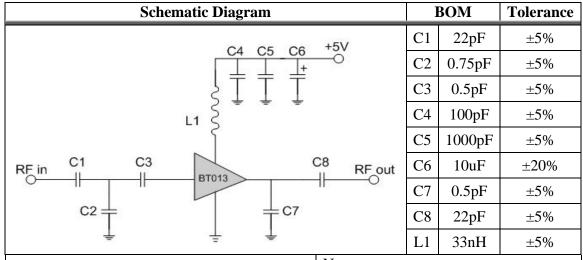


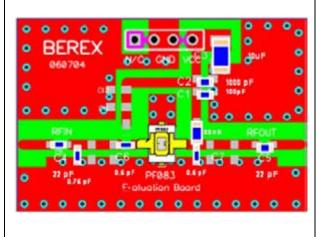

Note:


- 1. Chip is mounted on the PF083 open PKG, and bonded with 2-wires at Both input and output.
- 2 PCB: 31mil thick FR4
- 3 Distance between the center of the shunt cap(C6) and the input pin of BT013 is 0.7mm
- 4 Distance between the center of the shunt cap(C7) and the output pin of BT03 is 3.2mm

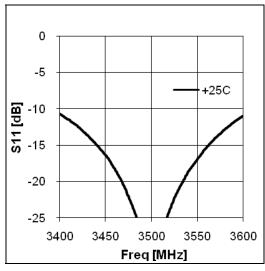

Typical Performance

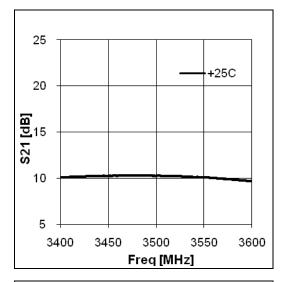


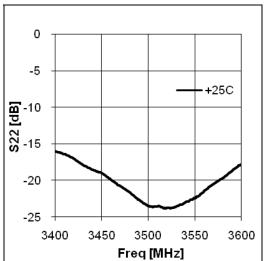


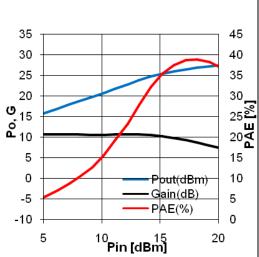


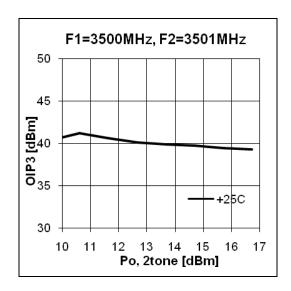
Application Circuit: 3500MHz

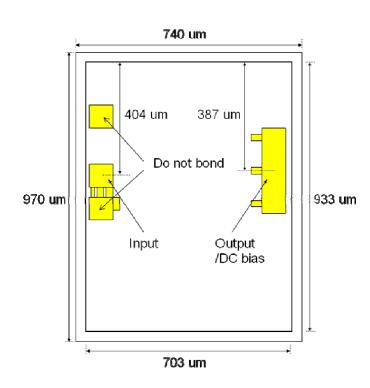





Note:


- 1. Chip is mounted on the PF083 open PKG, and bonded with 2-wires at both input and output.
- 2 PCB: 31mil thick FR4
- 3 Distance between the center of the shunt cap(C2) and the input pin of BT013 is 10mm
- 4 Distance between the center of the series cap(C3) and the input pin of BT013 is 4mm
- 5 Distance between the center of the shunt cap(C7) and the output pin of BT03 is 3mm


Typical Performance



Die Outline

NOTES:

- 1) DIE THICKNESS 100um
- 2) BONDPAD METAL THICKNESS 2.8um
- 3) BACKSIDE METAL Au, 5um
- 4) DEVICE IS GROUNDED THROUGH VIA HOLES

MSL / ESD Rating

ESD Rating Class 1

Value Passes <1000V

Test Human Body Model (HBM)
Standard JEDEC Standard JESD22-A114B

MSL Rating Level 1 at +265°C convection reflow

Standard JEDEC Standard J-STD-020

NATO CAGE code:

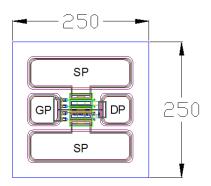
2	N	9	6	\mathbf{F}

NOTICE

BeRex Corporation reserves the right to make changes of product specification or to discontinue product at any time without notice.

Proper ESD procedures should be followed when handling this device.

SUPER LOW NOISE PHEMT CHIP (.15μm x 160μm)


The BeRex BCL016B is a GaAs super low noise pHEMT with a nominal 0.15 micron gate length and 160 micron gate width making the product ideally suited for applications requiring very low noise and high associated gain. The BCL016B offers high insertion gain and a low noise figure for broadband applications. The BCL016B is produced using state of the art metallization with SI_3N_4 passivation and is screened to assure reliability

PRODUCT FEATURES

- Low 0.4dB typical noise figure @12 GHz
- High 13.5dB Typical associated Gain @12 GHz
- High P_{in} of up to 20dBm
- 0.15 X 160 Micron Recessed Gate

APPLICATIONS

- Commercial
- Military / Hi-Rel.
- Test & Measurement

Chip dimensions: 250 X 250 microns Gate pad(GP): 48 X 48 microns Drain pad(DP): 48 X 48 microns Source pad(SP): 180 X 48 microns Chip thickness: 100 microns

ELECTRICAL CHARACTERISTICS (T_a = 25° C)

SYMBOL	PARAMETER/TEST CONDITIONS	TEST FREQ.	MIN.	TYPICAL	MAX.	UNIT
NF	Noise Figure (Vds = 2V, Id = 10mA)	12 GHz 18 GHz		0.4 0.6		dB
G_A	Associated Gain (Vds = 2V, Id = 10mA)	12 GHz 18 GHz	12.5 10.5	13.5 11.5		dB
P1dB	Output Power @ p1dB (Vds = 2V, Id = 10mA)	12 GHz	13	14.5		dBm
I _{DSS}	Saturated Drain Current (Vgs = 0V, Vds = 2V)		50		mA	
G_M	Transconductance (Vds = 2V, Vgs = -0.3V)			120		mS
V_P	Pinch-off Voltage (Vds = 2V, Id = 200μA)			-0.7		V
BV_GD	Gate-Drain Breakdown Voltage, (Ig = -200 μA, sourc		9		V	
BV_GS	Gate-Source Breakdown Voltage, (Ig = -200 μA, drai		6		V	
R _{TH}	Thermal Resistance, junction to back side (Au-Sn Eutectic Attach)			270		° C/W

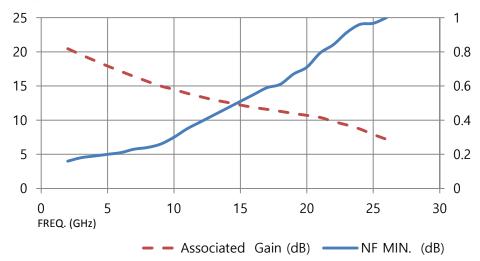
MAXIMUM RATING (T_a = 25° C)

SYMBOLS	PARAMETERS	ABSOLUTE MAX.
V _{DS}	Drain-Source Voltage	5 V
V_{GS}	Gate-Source Voltage	-3 V
I _{DS}	Drain Current	50 mA
I_{GSF}	Forward Gate Current	30 mA
P _{IN}	Input Power	20 dBm
T _{CH}	Channel Temperature	150° C
T _{STG}	Storage Temperature	-60° C - 150° C
P_T	Total Power Dissipation	200 mW

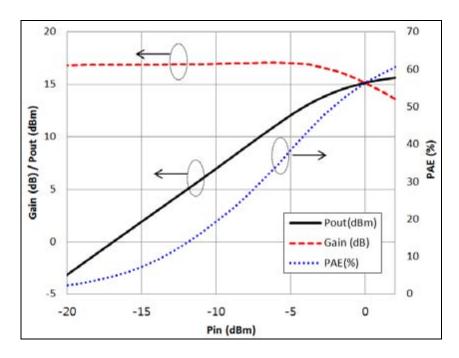
Exceeding any of the above Maximum Ratings will result in reduced MTTF and may cause permanent damage to the device.

S-PARAMETERS ($V_{ds} = 2 V$, $I_{ds} = 10 mA$)

FREQUENCY [GHz]	\$11 [MAG]	S11 [Ang]	S21 [MAG]	S21 [Ang]	S12 [MAG]	S12 [Ang]	S22 [MAG]	S22 [Ang]
1	0.99	-11.25	5.95	169.63	0.017	83.73	0.54	-5.90
2	0.98	-22.22	5.93	160.06	0.033	76.58	0.53	-11.65
3	0.97	-32.54	5.68	151.26	0.048	70.53	0.51	-17.14
4	0.95	-44.55	5.73	142.08	0.062	64.57	0.48	-21.53
5	0.93	-54.26	5.52	133.35	0.076	58.37	0.44	-27.50
6	0.91	-65.76	5.59	124.70	0.089	53.16	0.40	-32.21
7	0.88	-79.02	5.45	114.83	0.101	45.48	0.33	-42.00
8	0.85	-90.99	5.42	106.08	0.113	40.18	0.28	-45.56
9	0.82	-101.41	5.31	97.75	0.125	33.41	0.23	-58.00
10	0.78	-116.54	5.22	87.78	0.133	26.50	0.15	-73.89
11	0.74	-131.03	5.13	78.33	0.143	19.24	0.11	-103.09
12	0.68	-150.07	5.00	66.81	0.151	10.38	0.13	-157.16
13	0.66	-169.47	4.69	56.28	0.153	2.15	0.18	164.27
14	0.63	168.75	4.46	45.46	0.157	-6.54	0.26	148.69
15	0.64	145.31	4.10	33.81	0.154	-16.06	0.36	135.43
16	0.66	124.37	3.70	23.23	0.148	-24.06	0.44	126.12
17	0.69	102.63	3.30	11.86	0.141	-32.66	0.51	119.95
18	0.73	88.34	2.85	3.09	0.130	-38.61	0.57	111.43
19	0.76	75.06	2.48	-5.82	0.120	-43.78	0.62	106.03
20	0.80	59.85	2.12	-15.00	0.109	-48.60	0.65	101.91
21	0.82	52.72	1.80	-21.27	0.100	-50.84	0.67	98.55
22	0.84	42.62	1.52	-28.44	0.093	-53.53	0.69	96.42
23	0.86	35.06	1.23	-34.89	0.084	-57.23	0.71	92.69
24	0.89	32.73	1.04	-38.66	0.076	-60.50	0.73	90.55
25	0.91	24.09	0.86	-43.76	0.062	-61.13	0.76	89.32
26	0.93	19.10	0.69	-48.13	0.054	-60.20	0.77	88.42

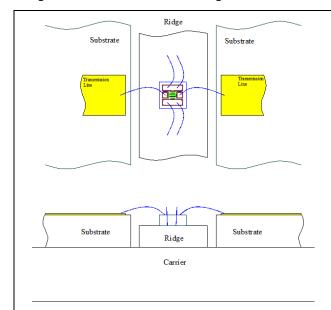

NOTE: S-parameters include 12 mil gold bond wires: 1 gate wire, 1 drain wire, 4 source wires. Reference planes are at the edge of substrates shown in the "Wire Bonding Information".

NOISE PARAMETERS ($V_{ds} = 2 \text{ V}$, $I_{ds} = 10 \text{ mA}$)


FREQUENCY (GHz)	NF MIN. (dB)	GAMMA OPT. (Mag.)	GAMMA OPT. (Ang.)	ASSOCIATED GAIN (dB)	NORMALIZED Rn
2	0.16	0.827	3.65	20.46	0.19
3	0.18	0.810	15.55	19.58	0.18
4	0.19	0.783	27.38	18.74	0.17
5	0.20	0.752	30.67	17.92	0.16
6	0.21	0.712	34.53	17.14	0.16
7	0.23	0.668	36.60	16.39	0.15
8	0.24	0.623	37.40	15.67	0.14
9	0.26	0.582	33.31	14.99	0.14
10	0.30	0.519	37.28	14.49	0.13
11	0.35	0.449	37.26	13.92	0.12
12	0.39	0.395	39.95	13.43	0.11
13	0.43	0.318	44.86	12.97	0.10
14	0.47	0.228	55.71	12.60	0.09
15	0.51	0.105	88.03	12.21	0.07
16	0.55	0.113	-164.03	11.86	0.06
17	0.59	0.287	-126.82	11.58	0.06
18	0.61	0.461	-106.23	11.29	0.10
19	0.67	0.606	-89.02	10.98	0.20
20	0.71	0.703	-73.51	10.70	0.30
21	0.79	0.763	-71.97	10.40	0.47
22	0.84	0.799	-66.64	9.80	0.51
23	0.91	0.825	-62.25	9.30	0.55
24	0.96	0.833	-58.63	8.70	0.61
25	0.97	0.845	-55.61	7.90	0.67
26	1.00	0.849	-52.18	7.20	0.79

NOTE: NF data includes 12 mil gold bond wires: 1 gate wire, 1 drain wire, 4 source wires. Reference planes are at the edge of substrates shown in the "Wire Bonding Information".

ASSOCIATE GAIN / NOISE FIGURE


P_{IN}_P_{OUT}/Gain, PAE (12 GHz)

Frequency = 12GHz $V_{DS} = 2 V$, $I_{DS} = 10 mA$

WIRE BONDING INFORMATION

Always follow wire bonding diagrams recommended by BeRex for each device to achieve optimum device performance and reliability. As a general rule, bonding temperature should be kept to a maximum of 280°C for no longer than 2 minutes for all bonding wires.

Using 1 mil. Diameter, Au bonding wires.

- 1. Gate to input transmission line
- Length and Height: 500 μm x 250 μm
- Number of wire(s): 1
- 2. Drain to output transmission line
- Length and Height : 500 μm x 250 μm
- Number of wire(s): 1
- 3. Source to ground plate
- Length and Height : 350 μm x 200 μm
- Number of wire(s): 4

Proper ESD procedures should be followed when handling this device.

HANDLING PRECAUTIONS:

GaAs FETs are very sensitive to and may be damaged by Electrostatic Discharge (ESD). Therefore, proper ESD precautions must be taken whenever you are handling these devices. It is critically important that all work surfaces, and assembly equipment, as well as the operator be properly grounded when handling these devices to prevent ESD damage.

DIE ATTACH RECOMMENDATIONS:

BeRex recommends the "Eutectic" die attach using Au/Sn (80/20) pre-forms. The die attach station must have accurate temperature control, and the operation should be performed with parts no hotter than 300°C for less than 10 seconds. An inert forming gas (90% $N_2/10\%$ H_2) or clean, dry N_2 should be used.

Use of conductive epoxy (gold or silver filled) may also be acceptable for die-attaching low power devices.

SHIPPING & STORAGE:

BeRex's standard chip device shipping package consists of an antistatic "Gel-Pak", holding the chips, placed inside a sealed metallized bag. This packaging is designed to provide a reasonable measure of protection from both mechanical and ESD damage.

Chip devices should be stored in a clean, dry Nitrogen gas environment at room temperature until they are required for assembly. Only open the shipping package or perform die assembly in a work area with a class 10,000 or better clean room environment to prevent contamination of the exposed devices.

CAUTION:

THIS PRODUCT CONTAINS GALLIUM ARSENIDE (GaAs) WHICH CAN BE HAZARDOUS TO THE HUMAN BODY AND THE ENVIRONMENT. THEREFORE, IT MUST BE HANDLED WITH CARE AND IN ACCORDANCE WITH ALL GOVERNMENTAL AND COMPANY REGULATIONS FOR THE SAFE HANDLING AND DISPOSAL OF HAZARDOUS WASTE. DO NOT DO NOT BURN, DESTROY, CUT, CRUSH OR CHEMICALLY DISSOLVE THE PRODUCT. DO NOT LICK THE PRODUCT OR IN ANY WAY ALLOW IT TO ENTER THE MOUTH. EXCLUDE THE PRODUCT FROM GENERAL INDUSTRIAL WASTE OR GARBAGE AND DISPOSE OF ONLY IN ACCORDANCE TO APPLICABLE LAWS AND/OR ORDINANCES.

DISCLAIMER

BEREX RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. BEREX DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN.

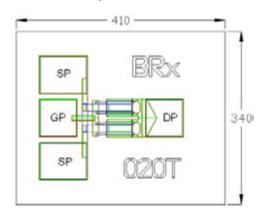
LIFE SUPPORT POLICY

BEREX PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES WITHOUT THE EXPRESS WRITTEN APPROVAL OF BEREX.

- 1. Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BCP020T

HIGH EFFICIENCY HETEROJUNCTION POWER FET CHIP (.25μm x 200μm)


The BeRex BCP020T is a GaAs Power pHEMT with a nominal 0.25 micron gate length and 200 micron gate width making the product ideally suited for amplifier applications where high-gain and medium power from DC to 26 GHz. The product may be used in either wideband or narrow-band applications. The BCP020T is produced using state of the art metallization with SI_3N_4 passivation and is screened to assure reliability.

PRODUCT FEATURES

- 24 dBm Typical Output Power @12 GHz
- 14 dB Typical Gain @12 GHz
- 60% PAE Typical @12 GHz
- 0.25 X 200 μm Recessed Gate
- Also available in 70 mil. ceramic package (BCP020T-70)

APPLICATIONS

- Commercial
- Military / Hi-Rel.
- Test & Measurement

Chip dimensions: 410 X 340 microns Gate pad(GP): 75 X 75 microns Drain pad(DP): 75 X 75 microns Source pad(SP): 95 X 75 microns Chip thickness: 100 microns

DC CHARACTERISTICS T_a = 25° C

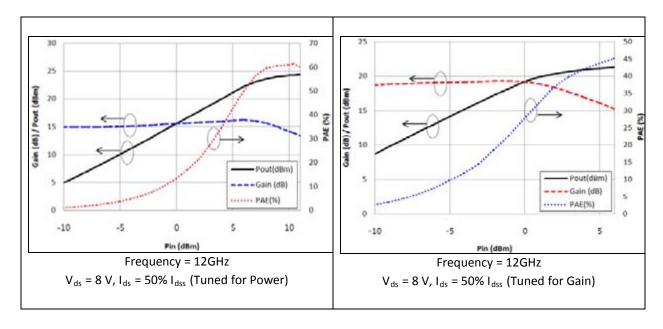
SYMBOL	PARAMETER/TEST CONDITIONS	MIN.	TYPICAL	MAX.	UNIT
I _{dss}	Saturated Drain Current ($V_{gs} = 0V$, $V_{ds} = 1.0V$)	40	60	80	mA
G_{m}	Transconductance ($V_{ds} = 3V$, $V_{gs} = 50\% I_{dss}$)		80		mS
V_p	Pinch-off Voltage ($I_{ds} = 0.3 \text{ mA}$, $V_{ds} = 3V$)	-2.5	-1.1	-0.5	V
BV_gd	Drain Breakdown Voltage (I _g = 0.6 mA, source open)		-15	-12	V
BV_gs	Source Breakdown Voltage (I _g = 0.6 mA, drain open)		-13		V
R_{th}	Thermal Resistance (Au-Sn Eutectic Attach)		160		°C/W

ELECTRICAL CHARACTERISTICS (TUNED FOR POWER) Ta = 25° C

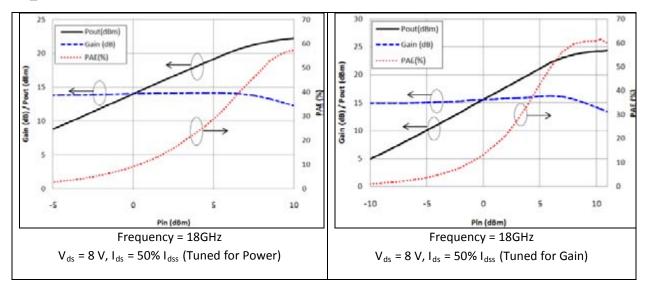
SYMBOL	PARAMETER/TEST CONDITIONS	TEST FREQ.	MIN.	TYPICAL	MAX.	UNIT
D	Output Power @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\%$	12 GHz	22.5	24.0		dBm
P _{1dB}	I _{dss})	18 GHz		24.0		ubili
	Gain @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\% I_{dss}$)	12 GHz	12.0	14.0		dB
G _{1dB}		18 GHz		12.0		иь
PAE	PAE @ P _{1dB} (V _{ds} = 8V, I _{ds} = 50% I _{dss})	12 GHz		60		%
PAE	FAL @ F _{1dB} (V _{ds} - OV, I _{ds} - 50% I _{dss})	18 GHz		55		/0
NF	50 Ohm Noise Figure (V _{ds} =2V, I _{ds} =10 mA)	12 GHz		1.09		dB

BeRex, Inc. 3350 Scot Blvd. #61-01 Santa Clara, CA 95054 tel. (408) 452-5595

ELECTRICAL CHARACTERISTICS (TUNED FOR GAIN) $T_a = 25^{\circ}$ C


SYMBOL	PARAMETER/TEST CONDITIONS	TEST FREQ.	MIN.	TYPICAL	MAX.	UNIT
D	Output Power @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\%$	12 GHz	20.0	21.0		dBm
P _{1dB}	l _{dss})	18 GHz		21.0		UBIII
C	Gain @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\% I_{dss}$)	12 GHz	15.5	17.0		dB
G _{1dB}		18 GHz		13.0		иь
DAE	DAE @ D (V = 8V = E09/)	12 GHz		45		%
PAE	PAE @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\% I_{dss}$)	18 GHz		45		70
NF	50 Ohm Noise Figure (V_{ds} =2V, I_{ds} =10 mA)	12 GHz		1.09		dB

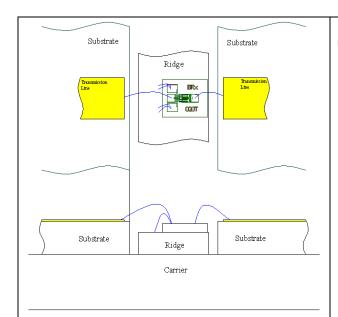
MAXIMUM RATINGS (T_a = 25° C)


SYMBOLS	PARAMETERS	ABSOLUTE	CONTINUOUS
V_{ds}	Drain-Source Voltage	12 V	8 V
V_{gs}	Gate-Source Voltage	-6 V	-3 V
I _{ds}	Drain Current	I_{dss}	I_{dss}
I_{gsf}	Forward Gate Current	11 mA	2 mA
P_{in}	Input Power	17 dBm	@ 3dB compression
T_ch	Channel Temperature	175° C	150° C
T_{stg}	Storage Temperature	-60° C - 150° C	-60° C - 150° C
P_{t}	Total Power Dissipation	1.0 W	0.8 W

Exceeding any of the above Maximum Ratings will result in reduced MTTF and may cause permanent damage to the device.

P_{IN}_P_{OUT}/Gain, PAE (12 GHz)

P_{IN}_P_{OUT}/Gain, PAE (18 GHz)


S-PARAMETERS ($V_{ds} = 8V$, $I_{ds} = 50\% I_{dss}$)

FREQ.	S11	S11	S21	S21	S12	S12	S22	S22
[GHZ]	[MAG]	[ANG.]	[MAG]	[ANG.]	[MAG]	[ANG.]	[MAG]	[ANG.]
1	0.98	-17.63	6.54	165.56	0.014	81.13	0.80	-5.99
2	0.95	-35.11	6.35	152.34	0.027	70.37	0.78	-11.31
3	0.90	-52.87	6.08	140.12	0.039	64.06	0.75	-15.78
4	0.85	-69.99	5.77	127.94	0.048	53.79	0.71	-20.09
5	0.80	-88.24	5.43	116.00	0.054	47.49	0.67	-24.42
6	0.76	-105.52	5.04	104.87	0.058	40.26	0.63	-27.88
7	0.72	-122.72	4.68	93.83	0.063	33.49	0.59	-32.54
8	0.71	-138.65	4.33	84.53	0.064	29.01	0.56	-34.82
9	0.69	-152.44	3.97	75.99	0.063	25.78	0.53	-36.61
10	0.68	-166.12	3.69	67.53	0.064	22.40	0.51	-38.64
11	0.69	-178.47	3.38	59.72	0.064	18.97	0.47	-39.57
12	0.70	170.61	3.17	51.75	0.067	17.78	0.46	-42.35
13	0.71	158.55	2.94	44.52	0.061	12.25	0.43	-43.48
14	0.73	149.14	2.73	37.18	0.062	12.90	0.40	-45.06
15	0.74	140.53	2.57	30.17	0.063	10.83	0.37	-47.57
16	0.78	131.12	2.40	22.71	0.064	8.80	0.33	-49.99
17	0.81	125.12	2.23	15.52	0.062	6.82	0.29	-55.76
18	0.82	117.90	2.06	8.53	0.066	2.23	0.24	-62.01
19	0.84	111.86	1.89	0.82	0.065	0.95	0.19	-72.70
20	0.86	109.58	1.74	-5.04	0.066	-1.33	0.14	-89.32
21	0.87	105.71	1.60	-11.40	0.068	-0.98	0.11	-123.58
22	0.88	103.28	1.45	-17.65	0.068	-3.31	0.13	-160.51
23	0.88	103.13	1.32	-22.86	0.070	-5.10	0.18	174.94
24	0.88	101.01	1.20	-28.51	0.070	-5.63	0.25	162.82
25	0.90	100.91	1.08	-33.17	0.066	-6.26	0.32	154.30
26	0.90	102.38	1.00	-36.21	0.070	-2.08	0.38	150.28

Note: S-parameters include bond wires. Reference planes are at edge of substrates shown on "Wire Bonding Information" figure below.

WIRE BONDING INFORMATION

Follow the wire bonding diagrams recommended by BeRex below to achieve optimum device performance. BeRex recommends thermo-compression wedge bonding. As a general rule, bonding temperature should be kept to a maximum of 280°C for no longer than 2 minutes for all bonding wires. Ultrasonic bonding is not recommended.

Using 1 mil. diameter, Au bonding wires.

- 1. Gate to input transmission line
 - Length and Height: 600 μm x 250 μm
 - Number of wire(s): 1
- 2. Drain to output transmission line
 - Length and Height: 400 μm x 250 μm
 - Number of wire(s): 1
- 3. Source to ground plate
 - Length and Height: 250 μm x 300 μm
 - Number of wire(s): 4

Proper ESD procedures should be followed when handling this device.

DIE ATTACH RECOMMENDATIONS:

BeRex recommends the "Eutectic" die attach using Au-Sn (80%-20%) pre-forms. The die attach station must have accurate temperature control, and the operation should be performed with parts no hotter than 300°C for less than 10 seconds. An inert forming gas (90% N_2 -10% H_2) or clean, dry N_2 should be used.

Use of conductive epoxy (gold or silver filled) may also be acceptable for die-attaching low power devices.

HANDLING PRECAUTIONS:

GaAs FETs are very sensitive to and may be damaged by Electrostatic Discharge (ESD). Therefore, proper ESD precautions must be taken whenever you are handling these devices. It is critically important that all work surfaces, and assembly equipment, as well as the operator be properly grounded when handling these devices to prevent ESD damage.

STORAGE & SHIPPING:

BeRex's standard chip device shipping package consists of an antistatic "Gel-Pak", holding the chips, placed inside a sealed antistatic and moisture barrier bag. This packaging is designed to provide a reasonable measure of protection from both mechanical and ESD damage.

Chip devices should be stored in a clean, dry Nitrogen gas environment at room temperature until they are required for assembly. Only open the shipping package or perform die assembly in a work area with a class 10,000 or better clean room environment to prevent contamination of the exposed devices.

CAUTION:

THIS PRODUCT CONTAINS GALLIUM ARSENIDE (GaAs) WHICH CAN BE HAZARDOUS TO THE HUMAN BODY AND THE ENVIRONMENT. THEREFORE, IT MUST BE HANDLED WITH CARE AND IN ACCORDANCE WITH ALL GOVERNMENTAL AND COMPANY REGULATIONS FOR THE SAFE HANDLING AND DISPOSAL OF HAZARDOUS WASTE. DO NOT BURN, DESTROY, CUT, CRUSH OR CHEMICALLY DISSOLVE THE PRODUCT. DO NOT LICK THE PRODUCT OR IN ANY WAY ALLOW IT TO ENTER THE MOUTH. EXCLUDE THE PRODUCT FROM GENERAL INDUSTRIAL WASTE OR GARBAGE AND DISPOSE OF ONLY IN ACCORDANCE TO APPLICABLE LAWS AND/OR ORDINANCES.

LIFE SUPPORT POLICY

BEREX PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES WITHOUT THE EXPRESS WRITTEN APPROVAL OF BEREX.

- 1. Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

DISCLAIMER

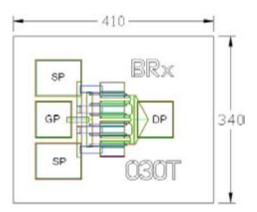
BEREX RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. BEREX DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN.

ROHS COMPLIANT

For complete specifications, S-parameters and information on bonding and handling, visited our website; www.berex.com

BCP030T

HIGH EFFICIENCY HETEROJUNCTION POWER FET CHIP (.25μm x 300μm)


The BeRex BCP030T is a GaAs Power pHEMT with a nominal 0.25 micron gate length and 300 micron gate width making the product ideally suited for amplifier applications where high-gain and medium power from DC to 26 GHz. The product may be used in either wideband or narrow-band applications. The BCP030T is produced using state of the art metallization with Sl_3N_4 passivation and is screened to assure reliability.

PRODUCT FEATURES

- 25 dBm Typical Output Power
- 14 dB Typical Gain @12 GHz
- 65% PAE Typical @12 GHz
- 0.25 X 300 μm Recessed Gate
- Also available in 70 mil. ceramic package (BCP030T-70)

APPLICATIONS

- Commercial
- Military / Hi-Rel.
- Test & Measurement

Chip dimensions : 410 X 340 microns Gate pad(GP) : 75 X 75 microns Drain pad(DP) : 75 X 75 microns Source pad(SP) : 95 X 75 microns Chip thickness : 100 microns

DC CHARACTERISTICS T_a = 25° C

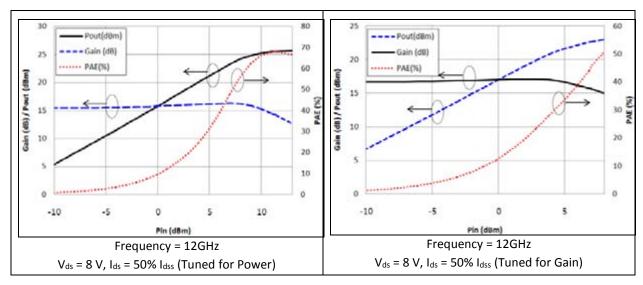
SYMBOL	PARAMETER/TEST CONDITIONS	MIN.	TYPICAL	MAX.	UNIT
l _{dss}	Saturated Drain Current (Vgs = 0V, Vds = 1.0V)	60	90	120	mA
G _m	Transconductance (V _{ds} = 2V, Vgs = 50% I _{dss})		120		mS
V_p	Pinch-off Voltage (I _{ds} = 0.3 mA, V _{ds} = 2V)	-2.5	-1.1	-0.5	V
BV_gd	Drain Breakdown Voltage (Ig = 0.3 mA, source open)		-15	-12	V
BV_gs	Source Breakdown Voltage (I _g = 0.3 mA, drain open)		-13		V
R _{th}	Thermal Resistance (Au-Sn Eutectic Attach)		121		°C/W

ELECTRICAL CHARACTERISTICS (TUNED FOR POWER) Ta = 25° C

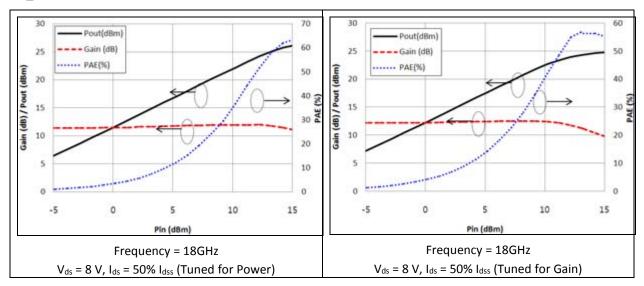
SYMBOL	PARAMETER/TEST CONDITIONS	TEST FREQ.	MIN.	TYPICAL	MAX.	UNIT
D	Output Power @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\%$ I_{dss})	12 GHz	24.5	25.5		dBm
P _{1dB}	Output Power @ PidB (Vds - 8V, ids - 50% idss)	18 GHz		25.5		иын
	Cain @ D . (V. = 9V L = E0% L)	12 GHz	13.0	14.0		dB
G _{1dB}	Gain @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\% I_{dss}$)	18 GHz		10.5		ив
DAE		12 GHz		65		0/
PAE	PAE @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\% I_{dss}$)	18 GHz		60		%
NF	50 Ohm Noise Figure (V _{ds} =2V, I _{ds} =15 mA)	12 GHz		1.14		dB

BeRex, Inc. 3350 Scot Blvd. #61-01 Santa Clara, CA 95054 tel. (408) 452-5595

ELECTRICAL CHARACTERISTICS (TUNED FOR GAIN) T_a = 25° C


SYMBOL	PARAMETER/TEST CONDITIONS	TEST FREQ.	MIN.	TYPICAL	MAX.	UNIT
P _{1dB}	Output Dower @ D (V 9)/ L 509/ L.)	12 GHz	22.0	23.0		dBm
	Output Power @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\%$ I_{dss})	18 GHz		23.0		UDIII
G _{1dB}	Gain @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\% I_{dss}$)	12 GHz	14.5	15.5		dB
GlaB	Gaill @ Fids (Vas - 8V, las - 30% lass)	18 GHz		11.5		uв
PAE	PAE @ P _{1dB} (V _{ds} = 8V, I _{ds} = 50% I _{dss})	12 GHz		45		%
PAE	FAL @ F1dB (Vds - 8V, Ids - 30% Idss)	18 GHz		45		/0
NF	50 Ohm Noise Figure (V _{ds} =2V, I _{ds} =15 mA)	12 GHz		1.14		dB

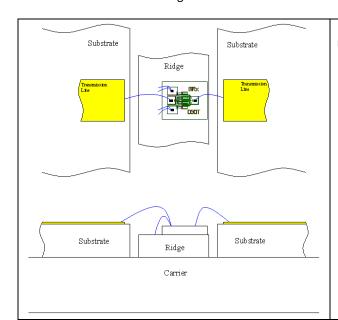
MAXIMUM RATINGS (T_a = 25° C)


SYMBOLS	PARAMETERS	ABSOLUTE	CONTINUOUS
V _{ds}	Drain-Source Voltage	12 V	8 V
V_{gs}	Gate-Source Voltage	-6 V	-3 V
l _{ds}	Drain Current	l _{dss}	l _{dss}
I_{gsf}	Forward Gate Current	18 mA	3 mA
P _{in}	Input Power	22 dBm	@ 3dB compression
T_ch	Channel Temperature	175° C	150° C
T_{stg}	Storage Temperature	-60° C - 150° C	-60° C - 150° C
Pt	Total Power Dissipation	1.4 W	1.2 W

Exceeding any of the above Maximum Ratings will result in reduced MTTF and may cause permanent damage to the device.

P_{IN}_P_{OUT}/GAIN, PAE (12 GHz)

P_{IN}_P_{OUT}/GAIN, PAE (18 GHz)


S-PARAMETER ($V_{ds} = 8V$, $I_{ds} = 50\% I_{dss}$)

FREQ.	S11	S11	S21	S21	S12	S12	S22	S22
[GHZ]	[MAG]	[ANG.]	[MAG]	[ANG.]	[MAG]	[ANG.]	[MAG]	[ANG.]
1	0.97	-27.72	9.10	159.71	0.019	74.59	0.71	-10.54
2	0.91	-53.85	8.41	141.85	0.036	61.30	0.66	-19.37
3	0.85	-78.65	7.57	126.23	0.048	50.31	0.59	-26.23
4	0.79	-100.97	6.73	112.12	0.055	41.94	0.54	-32.00
5	0.75	-121.90	5.95	99.32	0.061	35.64	0.48	-37.41
6	0.73	-139.47	5.24	88.30	0.062	30.97	0.44	-41.98
7	0.72	-155.99	4.62	77.67	0.062	24.97	0.40	-48.43
8	0.72	-168.99	4.14	68.95	0.063	21.67	0.38	-51.15
9	0.72	-179.97	3.71	61.22	0.060	19.65	0.36	-54.78
10	0.72	169.20	3.37	53.50	0.060	18.02	0.34	-58.30
11	0.74	160.38	3.04	46.46	0.060	16.99	0.33	-60.45
12	0.75	151.34	2.81	39.07	0.059	13.84	0.32	-63.94
13	0.76	142.18	2.58	32.32	0.059	14.91	0.30	-65.39
14	0.79	135.08	2.37	25.60	0.059	12.56	0.28	-67.17
15	0.80	128.26	2.21	19.05	0.060	12.24	0.25	-70.97
16	0.82	120.51	2.05	12.14	0.061	10.92	0.21	-75.16
17	0.85	116.46	1.88	5.62	0.060	8.30	0.17	-84.42
18	0.86	110.04	1.73	-1.49	0.064	5.45	0.13	-99.08
19	0.88	104.87	1.57	-9.16	0.065	3.39	0.10	-131.69
20	0.89	103.82	1.43	-14.39	0.066	3.64	0.11	-175.84
21	0.90	100.91	1.30	-20.35	0.069	1.83	0.17	160.35
22	0.90	99.40	1.15	-25.89	0.068	1.36	0.24	149.32
23	0.90	100.87	1.04	-30.07	0.067	-0.48	0.31	142.60
24	0.90	98.38	0.93	-34.99	0.066	-1.84	0.39	139.62
25	0.92	99.27	0.83	-38.62	0.068	-0.48	0.45	137.44
26	0.92	101.85	0.76	-40.47	0.064	4.76	0.49	137.87

Note: S-parameters include bond wires. Reference planes are at edge of substrates shown on "Wire Bonding Information" figure below.

WIRE BONDING INFORMATION

Follow the wire bonding diagrams recommended by BeRex below to achieve optimum device performance. BeRex recommends thermo-compression wedge bonding. As a general rule, bonding temperature should be kept to a maximum of 280°C for no longer than 2 minutes for all bonding wires. Ultrasonic bonding is not recommended.

Using 1 mil. diameter, Au bonding wires.

- 1. Gate to input transmission line
 - Length and Height : 600 μm x 250 μm
 - Number of wire(s): 1
- 2. Drain to output transmission line
 - Length and Height: 400 μm x 250 μm
 - Number of wire(s): 1
- 3. Source to ground plate
 - Length and Height: 250 μm x 300 μm
 - Number of wire(s): 4

Proper ESD procedures should be followed when handling this device.

DIE ATTACH RECOMMENDATIONS:

BeRex recommends the "Eutectic" die attach using Au-Sn (80%-20%) pre-forms. The die attach station must have accurate temperature control, and the operation should be performed with parts no hotter than 300°C for less than 10 seconds. An inert forming gas (90% N₂-10% H₂) or clean, dry N₂ should be used.

Use of conductive epoxy (gold or silver filled) may also be acceptable for die-attaching low power devices.

HANDLING PRECAUTIONS:

GaAs FETs are very sensitive to and may be damaged by Electrostatic Discharge (ESD). Therefore, proper ESD precautions must be taken whenever you are handling these devices. It is critically important that all work surfaces, and assembly equipment, as well as the operator be properly grounded when handling these devices to prevent ESD damage.

STORAGE & SHIPPING:

BeRex's standard chip device shipping package consists of an antistatic "Gel-Pak", holding the chips, placed inside a sealed antistatic and moisture barrier bag. This packaging is designed to provide a reasonable measure of protection from both mechanical and ESD damage.

Chip devices should be stored in a clean, dry Nitrogen gas environment at room temperature until they are required for assembly. Only open the shipping package or perform die assembly in a work area with a class 10,000 or better clean room environment to prevent contamination of the exposed devices.

CAUTION:

THIS PRODUCT CONTAINS GALLIUM ARSENIDE (GaAs) WHICH CAN BE HAZARDOUS TO THE HUMAN BODY AND THE ENVIRONMENT. THEREFORE, IT MUST BE HANDLED WITH CARE AND IN ACCORDANCE WITH ALL GOVERNMENTAL AND COMPANY REGULATIONS FOR THE SAFE HANDLING AND DISPOSAL OF HAZARDOUS WASTE. DO NOT BURN, DESTROY, CUT, CRUSH OR CHEMICALLY DISSOLVE THE PRODUCT. DO NOT LICK THE PRODUCT OR IN ANY WAY ALLOW IT TO ENTER THE MOUTH. EXCLUDE THE PRODUCT FROM GENERAL INDUSTRIAL WASTE OR GARBAGE AND DISPOSE OF ONLY IN ACCORDANCE TO APPLICABLE LAWS AND/OR ORDINANCES

DISCLAIMER

BEREX RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. BEREX DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN.

LIFE SUPPORT POLICY

BEREX PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES WITHOUT THE EXPRESS WRITTEN APPROVAL OF BEREX.

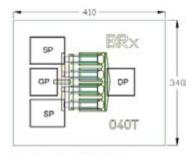
- 1. Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

For complete specifications, S-parameters and information on bonding and handling, visited our website; www.berex.com

3.

BCP040T

HIGH EFFICIENCY HETEROJUNCTION POWER FET CHIP (.25μm x 400μm)


The BeRex BCP040T is a GaAs Power pHEMT with a nominal 0.25 micron gate length and 400 micron gate width making the product ideally suited for applications requiring high-gain and medium power from DC to 26 GHz. The product may be used in either wideband or narrow-band applications. The BCP040T is produced using state of the art metallization with Sl_3N_4 passivation and is screened to assure reliability

PRODUCT FEATURES

- 26 dBm Typical Output Power
- 14 dB Typical Power Gain @ 12 GHz
- 0.25 X 400 Micron Recessed Gate

APPLICATIONS

- Commercial
- Military / Hi-Rel
- Test & Measurement

Chip dimensions : 410 X 340 microns Gate pad(GP): 75 X 75 microns Drain pad(DP): 75 X 75 microns Source pad(SP): 95 X 75 microns Chip thickness: 100 microns

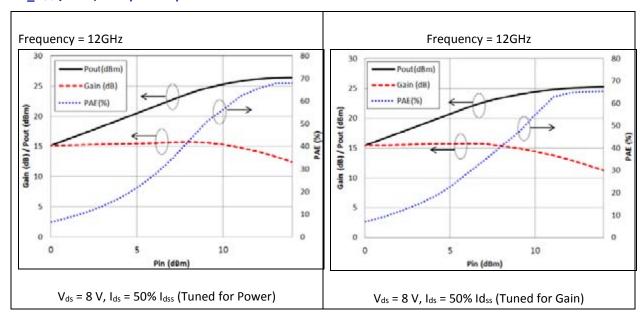
DC CHARACTERISTICS T_a = 25° C

SYMBOL	PARAMETER/TEST CONDITIONS	MIN.	TYPICAL	MAX.	UNIT
l _{dss}	Saturated Drain Current (V _{gs} = 0V, V _{ds} = 1.0V)	80	120	160	mA
G _m	Transconductance (V _{ds} = 3V, V _{gs} = 50% I _{dss})		160		mS
V_p	Pinch-off Voltage ($I_{ds} = 400 \mu A$, $V_{ds} = 2V$)		-1.1		V
BV_gd	Drain Breakdown Voltage (Igd = 0.4 mA, source open)		-16		٧
BV_gs	Source Breakdown Voltage (I _g = 0.4 mA, drain open)		-14		V
R _{th}	Thermal Resistance (Au-Sn Eutectic Attach)		120		°C/W

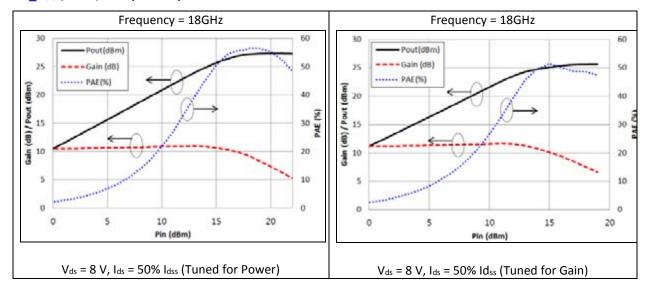
ELECTRICAL CHARACTERISTIC (TUNED FOR POWER) Ta = 25° C

SYMBOL	PARAMETER/TEST CONDITIONS	FREQ.	MIN.	TYPICAL	MAX.	UNIT
P _{1dB}	Output Dower @ D (V 8V L 50% L.)	12 GHz	24.5	26.0		dBm
	Output Power @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\%$ I_{dss})	18 GHz	23.5	25.0		иын
-	Cain @ D (V 9)/ L E00/ L.)	12 GHz	13.0	14.0		dB
G _{1dB}	Gain @ P _{1dB} (V _{ds} = 8V, I _{ds} = 50% I _{dss})	18 GHz	9.0	10.0		
PAE	DAE @ D . (\/. = 8\/ L. = E09/ L. \	12 GHz		65		%
PAE	PAE @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\% I_{dss}$)	18 GHz		65		70
NF	Noise Figure (V _{ds} = 2V, I _{ds} = 10mA)	12 GHz		1.0		dB

ELECTRICAL CHARACTERISTIC (TUNED FOR GAIN) T_a = 25° C


SYMBOL	PARAMETER/TEST CONDITIONS	FREQ.	MIN.	TYPICAL	MAX.	UNIT
P _{1dB}	Output Power @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\%$ I_{dss})	12 GHz	23.0	24.5		dBm
	3 (v as 3) (as 3) (as 3)	18 GHz	23.5	25.0		
G _{1dB}	Gain @ P _{1dB} (V _{ds} = 8V, I _{ds} = 50% I _{dss})	12 GHz	13.5	14.5		dB
Glas	Gaill @ Flas (Vas - 8V, las - 30% lass)	18 GHz	9.5	10.5		
PAE	PAE @ P _{1dB} (V _{ds} = 8V, I _{ds} = 50% I _{dss})	12 GHz		55		%
PAE	FAL @ F1dB (Vds - 8V, Ids - 30% Idss)	18 GHz		50		70
NF	Noise Figure (V _{ds} = 2V, I _{ds} = 10mA)	12 GHz		1.0		dB

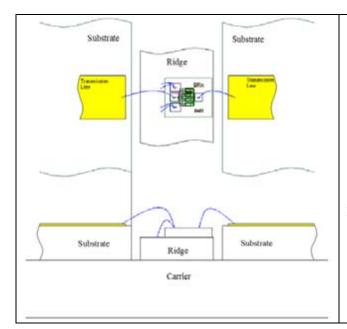
MAXIMUM RATING (Ta = 25°C)


SYMBOLS	PARAMETERS	ABSOLUTE	CONTINUOUS
V_{ds}	Drain-Source Voltage	12 V	8 V
V_{gs}	Gate-Source Voltage	-8 V	-3 V
l _{ds}	Drain Current	l _{dss}	l _{dss}
Igsf	Forward Gate Current	20 mA	3 mA
P _{in}	Input Power	21 dBm	@ 3dB compression
T_{ch}	Channel Temperature	175° C	150° C
T_{stg}	Storage Temperature	-60° C - 150° C	-60° C - 150° C
Pt	Total Power Dissipation	1.3 W	1.1 W

Exceeding any of the above Maximum Ratings will result in reduced MTTF and may cause permanent damage to the device.

P_{IN}_P_{OUT}/Gain, PAE (12 GHz)

P_{IN}_P_{OUT}/Gain, PAE (18 GHz)


S-PARAMETER ($V_{ds} = 8V$, $I_{ds} = 50\% I_{dss}$)

FREQ.	S11	S11	S21	S21	S12	S12	S22	S22
[GHZ]	[MAG]	[ANG.]	[MAG]	[ANG.]	[MAG]	[ANG.]	[MAG]	[ANG.]
1	0.96	-38.95	10.74	154.03	0.024	67.870	0.63	-16.38
2	0.90	-72.73	9.35	132.90	0.041	51.922	0.56	-28.82
3	0.84	-100.58	7.93	115.40	0.052	40.124	0.49	-38.66
4	0.80	-124.51	6.72	100.84	0.058	30.602	0.43	-45.59
5	0.79	-144.07	5.75	88.09	0.060	22.712	0.38	-51.83
6	0.77	-160.36	4.94	77.17	0.061	17.573	0.34	-56.32
7	0.77	-175.12	4.30	67.14	0.061	13.087	0.31	-60.95
8	0.78	172.50	3.77	57.90	0.060	8.273	0.29	-66.49
9	0.79	161.60	3.33	49.47	0.058	5.197	0.27	-71.96
10	0.80	151.54	2.95	41.38	0.056	2.259	0.25	-78.38
11	0.82	143.51	2.62	33.87	0.055	0.457	0.23	-86.25
12	0.84	137.56	2.35	27.30	0.054	-1.309	0.22	-93.90
13	0.85	131.64	2.11	20.76	0.052	-2.402	0.21	-103.35
14	0.87	126.69	1.91	14.58	0.052	-3.289	0.20	-116.08
15	0.88	122.78	1.76	9.18	0.052	-4.234	0.20	-125.70
16	0.89	118.31	1.61	3.27	0.052	-4.521	0.20	-137.48
17	0.90	114.15	1.50	-2.94	0.053	-6.342	0.21	-150.51
18	0.91	111.19	1.37	-8.97	0.054	-7.516	0.23	-162.04
19	0.92	106.48	1.25	-15.31	0.055	-8.383	0.24	-170.91
20	0.92	104.43	1.16	-21.21	0.057	-10.277	0.27	178.56
21	0.92	102.30	1.06	-26.28	0.057	-8.773	0.31	169.29
22	0.91	99.92	0.97	-31.27	0.059	-9.308	0.34	161.39
23	0.92	98.63	0.89	-35.98	0.060	-10.045	0.38	154.95
24	0.91	96.95	0.81	-40.77	0.059	-10.944	0.42	148.51
25	0.92	95.77	0.73	-45.07	0.058	-8.730	0.45	143.09
26	0.92	95.87	0.66	-48.56	0.058	-3.981	0.48	138.86

Note: S-parameters include bond wires. Reference planes are at edge of substrates shown on "Wire Bonding Information" figure below.

WIRE BONDING INFORMATION

Follow the wire bonding diagrams recommended by BeRex below to achieve optimum device performance. BeRex recommends thermo-compression wedge bonding. As a general rule, bonding temperature should be kept to a maximum of 280°C for no longer than 2 minutes for all bonding wires. Ultrasonic bonding is not recommended.

Bonding Wire information

- 1. Gate to input transmission line
 - Length and Height: 400 um and 250 um
 - Number of wire: 1 wire
- 2. Drain to output transmission line
 - Length and Height: 350 um and 250 um
 - Number of wire: 1 wire
- 3. Source to ground plate
 - Length and Height: 200 um and 250 um
 - Number of wire: 4 wires
- X The diameter of bonding wires: 1 mil

Proper ESD procedures should be followed when handling this device.

DIE ATTACH RECOMMENDATIONS:

BeRex recommends the "Eutectic" die attach using Au-Sn (80%-20%) pre-forms. The die attach station must have accurate temperature control, and the operation should be performed with parts no hotter than 300°C for less than 10 seconds. An inert forming gas (90% N₂-10% H₂) or clean, dry N₂ should be used.

HANDLING PRECAUTIONS:

GaAs FETs are very sensitive to and may be damaged by Electrostatic Discharge (ESD). Therefore, proper ESD precautions must be taken whenever you are handling these devices. It is critically important that all work surfaces, and assembly equipment, as well as the operator be properly grounded when handling these devices to prevent ESD damage.

STORAGE & SHIPPING:

BeRex's standard chip device shipping package consists of an antistatic "Gel-Pak", holding the chips, placed inside a sealed antistatic and moisture barrier bag. This packaging is designed to provide a reasonable measure of protection from both mechanical and ESD damage.

Chip devices should be stored in a clean, dry Nitrogen gas environment at room temperature until they are required for assembly. Only open the shipping package or perform die assembly in a work area with a class 10,000 or better clean room environment to prevent contamination of the exposed devices.

CAUTION:

THIS PRODUCT CONTAINS GALLIUM ARSENIDE (GaAs) WHICH CAN BE HAZARDOUS TO THE HUMAN BODY AND THE ENVIRONMENT. THEREFORE, IT MUST BE HANDLED WITH CARE AND IN ACCORDANCE WITH ALL GOVERNMENTAL AND COMPANY REGULATIONS FOR THE SAFE HANDLING AND DISPOSAL OF HAZARDOUS WASTE. DO NOT BURN, DESTROY, CUT, CRUSH OR CHEMICALLY DISSOLVE THE PRODUCT. DO NOT LICK THE PRODUCT OR IN ANY WAY ALLOW IT TO ENTER THE MOUTH. EXCLUDE THE PRODUCT FROM GENERAL INDUSTRIAL WASTE OR GARBAGE AND DISPOSE OF ONLY IN ACCORDANCE TO APPLICABLE LAWS AND/OR ORDINANCES.

DISCLAIMER

BEREX RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. BEREX DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN.

LIFE SUPPORT POLICY

BEREX PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES WITHOUT THE EXPRESS WRITTEN APPROVAL OF BEREX.

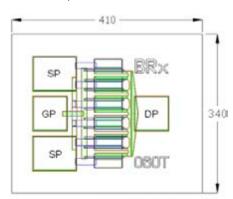
- 1. Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ROHS COMPLIANT

For complete specifications, S-parameters and information on bonding and handling, visited our website; www.berex.com

BCP060T

HIGH EFFICIENCY PHEMT POWER FET CHIP (.25μm x 600μm)


The BeRex BCP060T is a GaAs Power pHEMT with a nominal 0.25 micron gate length and 600 micron gate width making the product ideally suited for amplifier applications where high-gain and medium power from DC to 26 GHz. The product may be used in either wideband or narrow-band applications. The BCP060T is produced using state of the art metallization with SI₃N₄ passivation and is screened to assure reliability.

PRODUCT FEATURES

- 28 dBm Typical Output Power
- 12 dB Typical Gain @ 12 GHz
- 55% PAE Typical @12 GHz
- 0.25 X 600 μm Recessed Gate
- Also available in 70 mil. ceramic package (BCP060T-70)

APPLICATIONS

- Commercial
- Military / Hi-Rel.
- Test & Measurement

Chip dimensions: 410 X 340 microns Gate pad(GP): 75 X 75 microns Drain pad(DP): 75 X 75 microns Source pad(SP): 95 X 75 microns Chip thickness: 100 microns

DC CHARACTERISTICS T_a = 25° C

SYMBOL	PARAMETER/TEST CONDITIONS	MIN.	TYPICAL	MAX.	UNIT
l _{dss}	Saturated Drain Current (Vgs = 0V, Vds = 2V)	120	180	240	mA
Gm	Transconductance ($V_{ds} = 3V$, $V_{gs} = 50\% I_{dss}$)		240		mS
V_p	Pinch-off Voltage (I _{ds} = 0.6 mA, V _{ds} = 2V)	- 2.5	-1.1	- 0.5	V
BV_gd	Drain Breakdown Voltage (Ig = 0.6 mA, source open)		-15	-12	V
BV_gs	Source Breakdown Voltage (Ig = 0.6 mA, drain open)		-13		V
R _{th}	Thermal Resistance (Au-Sn Eutectic Attach)		75		°C/W

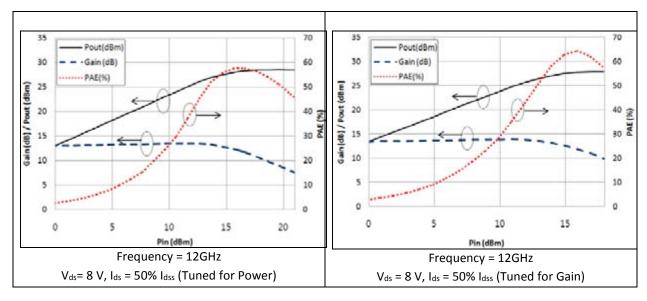
ELECTRICAL CHARACTERISTIC (TUNED FOR POWER) T_a = 25° C

SYMBOL	PARAMETER/TEST CONDITIONS	TEST FREQ.	MIN.	TYPICAL	MAX.	UNIT
P _{1dB}	Output Power @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\%$ I_{dss})	12 GHz 18 GHz	27.0	28.0 28.5		dBm
G _{1dB}	Gain @ P _{1dB} (V _{ds} = 8V, Ids = 50% I _{dss})	12 GHz 18 GHz	11.0	12.0 9.0		dB
PAE	PAE @ P _{1dB} (V _{ds} = 8V, I _{ds} = 50% I _{dss})	12 GHz 18 GHz		55 55		%
NF	50 Ohm Noise Figure (V _{ds} =2V, I _{dss} =15 mA)	12 GHz		1.34		dB

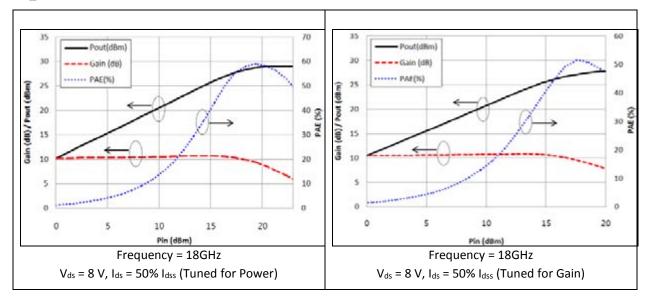
BeRex, Inc. 3350 Scot Blvd. #61-01 Santa Clara, CA 95054 tel. (408) 452-5595

January 2015

ELECTRICAL CHARACTERISTIC (TUNED FOR GAIN) T_a = 25° C


SYMBOL	PARAMETER/TEST CONDITIONS	TEST FREQ.	MIN.	TYPICAL	MAX.	UNIT
P _{1dB}	Output Dower @ D (V 8V. L FOW L.)	12 GHz		27.5		dBm
	Output Power @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\%$ I_{dss})	18 GHz		27.0		иын
C	Gain @ P _{1dB} (V _{ds} = 8V, Ids = 50% I _{dss})	12 GHz	11.0	12.5		dB
G _{1dB}	Gain @ P1dB (Vds - 8V, lus - 50% ldss)	18 GHz		9.5		
PAE	DAE @ D . (\/. = 8\/ L. = E0% L. \	12 GHz		55		%
PAE	PAE @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\% I_{dss}$)	18 GHz		50		70
NF	50 Ohm Noise Figure (V _{ds} =2V, I _{dss} =15 mA)	12 GHz		1.34		dB

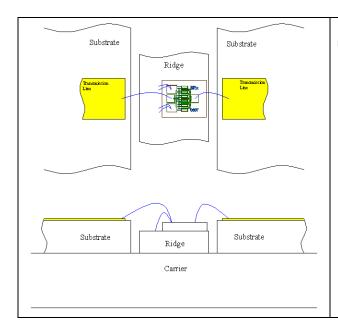
MAXIMUM RATING (T_a = 25° C)


SYMBOLS	PARAMETERS	ABSOLUTE	CONTINUOUS	
V_{ds}	Drain-Source Voltage	12 V	8 V	
V_{gs}	Gate-Source Voltage	-6 V	-3 V	
l _{ds}	Drain Current	l _{dss}	l _{dss}	
Igsf	Forward Gate Current	30 mA	10 mA	
P _{in}	Input Power	25 dBm	@3dB Compression	
T_{ch}	Channel Temperature	175° C	150° C	
T_{stg}	Storage Temperature	-60° C - 150° C	-60° C - 150° C	
Pt	Total Power Dissipation	2.6 W	2.2 W	

Exceeding any of the above Maximum Ratings will result in reduced MTTF and may cause permanent damage to the device.

P_{IN}_P_{OUT}/Gain, PAE (12 GHz)

P_{IN}_P_{OUT}/Gain, PAE (18 GHz)


S-PARAMETER ($V_{ds} = 8V$, $I_{ds} = 50\% I_{dss}$)

FREQ.	S11	S11	S21	S21	S12	S12	S22	S22
[GHZ]	[MAG]	[ANG.]	[MAG]	[ANG.]	[MAG]	[ANG.]	[MAG]	[ANG.]
1	0.92	-57.91	13.83	142.64	0.017	62.75	0.45	-30.63
2	0.83	-100.13	10.45	117.12	0.032	43.42	0.34	-49.55
3	0.79	-129.58	7.98	99.76	0.047	34.74	0.25	-62.90
4	0.77	-150.61	6.32	86.33	0.061	28.79	0.19	-72.26
5	0.77	-165.65	5.18	75.24	0.073	27.32	0.15	-86.36
6	0.77	-178.11	4.35	65.56	0.084	26.36	0.13	-101.81
7	0.78	172.13	3.69	56.72	0.094	25.99	0.12	-123.94
8	0.79	163.81	3.25	48.59	0.103	25.03	0.12	-137.66
9	0.80	156.81	2.88	41.33	0.108	23.59	0.12	-155.22
10	0.81	150.09	2.58	34.01	0.114	24.54	0.14	-169.25
11	0.82	143.11	2.34	26.33	0.120	23.14	0.16	178.07
12	0.83	136.61	2.12	18.59	0.124	22.92	0.19	168.01
13	0.85	130.15	1.94	11.44	0.130	19.85	0.22	157.74
14	0.86	123.54	1.77	3.60	0.134	16.06	0.25	148.31
15	0.88	117.87	1.60	-4.01	0.139	14.39	0.30	140.13
16	0.89	112.39	1.45	-11.27	0.144	10.53	0.35	132.31
17	0.90	106.79	1.29	-19.37	0.148	7.58	0.41	126.29
18	0.91	103.05	1.13	-26.14	0.153	6.07	0.46	120.85
19	0.92	100.04	1.00	-32.93	0.155	3.45	0.51	115.68
20	0.92	97.13	0.88	-38.54	0.156	0.94	0.57	111.97
21	0.93	96.22	0.76	-43.13	0.150	0.17	0.61	109.56
22	0.93	96.46	0.66	-46.19	0.149	0.71	0.65	107.33
23	0.92	96.55	0.57	-49.34	0.147	-0.34	0.68	106.11
24	0.92	97.66	0.51	-51.56	0.145	-0.02	0.71	106.08
25	0.94	98.95	0.46	-53.03	0.144	2.76	0.74	105.60
26	0.93	99.53	0.41	-54.01	0.145	3.92	0.76	106.41

Note: S-parameters include bond wires. Reference planes are at edge of substrates shown on "Wire Bonding Information" figure below.

Wire Bonding Information

Follow the wire bonding diagrams recommended by BeRex below to achieve optimum device performance. BeRex recommends thermo-compression wedge bonding. As a general rule, bonding temperature should be kept to a maximum of 280°C for no longer than 2 minutes for all bonding wires. Ultrasonic bonding is not recommended.

Using 1 mil. diameter, Au bonding wires.

- 1. Gate to input transmission line
 - Length and Height : 600 μm x 250 μm
 - Number of wire(s): 1
- 2. Drain to output transmission line
 - Length and Height : 400 μm x 250 μm
 - Number of wire(s): 1
- 3. Source to ground plate
 - Length and Height : 250 μm x 300 μm
 - Number of wire(s): 4

Proper ESD procedures should be followed when handling this device.

DIE ATTACH RECOMMENDATIONS:

BeRex recommends the "Eutectic" die attach using Au-Sn (80%-20%) pre-forms. The die attach station must have accurate temperature control, and the operation should be performed with parts no hotter than 300° C for less than 10 seconds. An inert forming gas (90% N₂-10% H₂) or clean, dry N₂ should be used.

HANDLING PRECAUTIONS:

GaAs FETs are very sensitive to and may be damaged by Electrostatic Discharge (ESD). Therefore, proper ESD precautions must be taken whenever you are handling these devices. It is critically important that all work surfaces, and assembly equipment, as well as the operator be properly grounded when handling these devices to prevent ESD damage.

STORAGE & SHIPPING:

BeRex's standard chip device shipping package consists of an antistatic "Gel-Pak", holding the chips, placed inside a sealed antistatic and moisture barrier bag. This packaging is designed to provide a reasonable measure of protection from both mechanical and ESD damage.

Chip devices should be stored in a clean, dry Nitrogen gas environment at room temperature until they are required for assembly. Only open the shipping package or perform die assembly in a work area with a class 10,000 or better clean room environment to prevent contamination of the exposed devices.

CAUTION:

THIS PRODUCT CONTAINS GALLIUM ARSENIDE (GaAs) WHICH CAN BE HAZARDOUS TO THE HUMAN BODY AND THE ENVIRONMENT. THEREFORE, IT MUST BE HANDLED WITH CARE AND IN ACCORDANCE WITH ALL GOVERNMENTAL AND COMPANY REGULATIONS FOR THE SAFE HANDLING AND DISPOSAL OF HAZARDOUS WASTE. DO NOT BURN, DESTROY, CUT, CRUSH OR CHEMICALLY DISSOLVE THE PRODUCT. DO NOT LICK THE PRODUCT OR IN ANY WAY ALLOW IT TO ENTER THE MOUTH. EXCLUDE THE PRODUCT FROM GENERAL INDUSTRIAL WASTE OR GARBAGE AND DISPOSE OF ONLY IN ACCORDANCE TO APPLICABLE LAWS AND/OR ORDINANCES

DISCLAIMER

BEREX RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. BEREX DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN.

LIFE SUPPORT POLICY

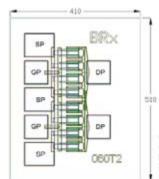
BEREX PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES WITHOUT THE EXPRESS WRITTEN APPROVAL OF BEREX.

- Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

For complete specifications, S-parameters and information on bonding and handling, visited our website; www.berex.com

BCP060T2

HIGH EFFICIENCY PHEMT POWER FET CHIP (.25μm x 600μm)


The BeRex BCP060T2 is a GaAs Power pHEMT with a nominal 0.25 micron gate length and 600 micron gate width making it ideally suited for applications requiring high-gain and medium power in the 1000 MHz to 26.5 GHz frequency range. The product may be used in either wideband (6-18 GHz) or narrow-band applications. The BCP060T2 is produced using state of the art metallization with SI_3N_4 passivation and is screened to assure reliability.

PRODUCT FEATURES

- 29 dBm Typical Output Power
- 12 dB Typical Power Gain @ 12 GHz
- 0.25 X 600 Micron Recessed Gate
- 2 Gate Pads / 2 Drain Pads

APPLICATIONS

- Commercial
- Military / Hi-Rel.
- Test & Measurement

Chip dimensions: 410 X 510 microns Gate pad(GP): 75 X 75 microns Drain pad(DP): 75 X 75 microns

Drain pad(DP): 75 X 75 microns Source pad(SP): 95 X 75 microns Chip thickness: 100 microns

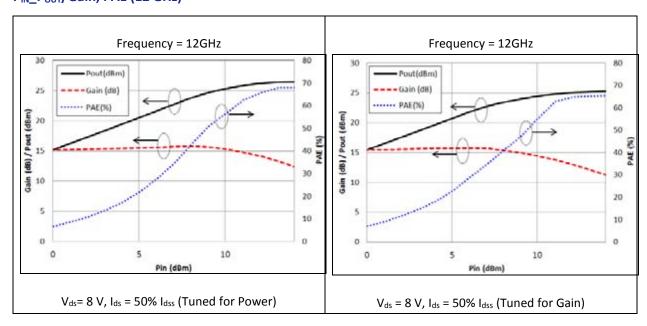
DC CHARACTERISTICS T_a = 25° C

SYMBOL	PARAMETER/TEST CONDITIONS	MIN.	TYPICAL	MAX.	UNIT
l _{dss}	Saturated Drain Current (Vgs = 0V, Vds = 2V)	120	180	240	mA
Gm	Transconductance (V _{ds} = 3V, V _{gs} = 50% I _{dss})		240		mS
V_p	Pinch-off Voltage ($I_{ds} = 0.6 \text{ mA}$, $V_{ds} = 2V$)	- 2.5	-1.1	- 0.5	V
BV_gd	Drain Breakdown Voltage (Ig = 0.6 mA, source open)		-16	-12	V
BV_gs	Source Breakdown Voltage (Ig = 0.6 mA, drain open)		-14		٧
R _{th}	Thermal Resistance (Au-Sn Eutectic Attach)		65		°C/W

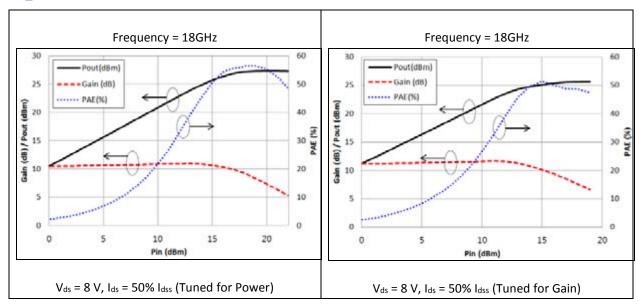
ELECTRICAL CHARACTERISTIC (TUNED FOR POWER) Ta = 25° C

SYMBOL	PARAMETER/TEST CONDITIONS	TEST FREQ.	MIN.	TYPICAL	MAX.	UNIT
P _{1dB}	Output Power @ P _{1dB} (V _{ds} = 8V, I _{ds} = 50% I _{dss})	12 GHz	27.5	29.0		dBm
		18 GHz	27.5	29.0		
G _{1dB}	Gain @ P _{1dB} (V _{ds} = 8V, Ids = 50% I _{dss})	12 GHz	11.0	12.0		dB
		18 GHz	8.0	9.0		
PAE	PAE @ P _{1dB} (V _{ds} = 8V, I _{ds} = 50% I _{dss})	12 GHz		65		%
		18 GHz		60		

ELECTRICAL CHARACTERISTIC (TUNED FOR GAIN) T_a = 25° C


SYMBOL	PARAMETER/TEST CONDITIONS	TEST FREQ.	MIN.	TYPICAL	MAX.	UNIT
P _{1dB}	Output Dowor @ D (V 9)/ L 509/ L.)	12 GHz	25.5	27.0		dBm
P1dB	Output Power @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\%$ I_{dss})	18 GHz	26.0	28.0		иын
G _{1dB}	Gain @ P _{1dB} (V _{ds} = 8V, Ids = 50% I _{dss})	12 GHz	12.5	13.5		dB
GlaB	Gaill @ Flos (Vos = 8V, lus = 50% ldss)	18 GHz	9.5	10.5		uв
PAE	PAE @ P _{1dB} (V _{ds} = 8V, I _{ds} = 50% I _{dss})	12 GHz		60		%
FAE	FAL @ F1dB (Vds - OV, Ids - 30% Idss)	18 GHz		60		/0

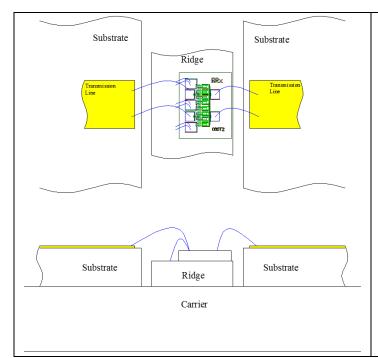
MAXIMUM RATING (Ta = 25°C)


SYMBOLS	PARAMETERS	ABSOLUTE	CONTINUOUS
V_{ds}	Drain-Source Voltage	12 V	8 V
V_{gs}	Gate-Source Voltage	-8 V	-3 V
I_{ds}	Drain Current	I_{dss}	I_{dss}
I _{gsf}	Forward Gate Current	30 mA	5 mA
Pin	Input Power	24 dBm	@3dB Compression
T_{ch}	Channel Temperature	175° C	150° C
T_{stg}	Storage Temperature	-60° C - 150° C	-60° C - 150° C
Pt	Total Power Dissipation	2.1 W	1.7 W

 ${\it Exceeding any of the above Maximum Ratings will result in reduced MTTF and may cause permanent damage to the device.}$

P_{IN}_P_{OUT}/Gain, PAE (12 GHz)

P_{IN}_P_{OUT}/Gain, PAE (18 GHz)


S-PARAMETER ($V_{ds} = 8V$, $I_{ds} = 50\% I_{dss}$)

FREQ.	S11	S11	S21	S21	S12	S12	S22	S22
[GHZ]	[MAG]	[ANG.]	[MAG]	[ANG.]	[MAG]	[ANG.]	[MAG]	[ANG.]
1	0.92	-64.25	13.19	141.20	0.033	56.560	0.46	-36.52
2	0.87	-105.65	9.68	117.34	0.048	37.422	0.37	-58.58
3	0.84	-131.06	7.33	101.49	0.053	27.876	0.32	-72.07
4	0.83	-149.30	5.79	89.56	0.055	21.285	0.29	-80.80
5	0.82	-162.29	4.75	79.77	0.055	17.345	0.28	-88.81
6	0.82	-172.56	4.00	71.40	0.055	14.429	0.28	-93.34
7	0.82	177.98	3.44	63.68	0.054	12.980	0.29	-97.85
8	0.83	170.03	2.99	56.43	0.053	11.367	0.29	-103.15
9	0.83	162.91	2.64	49.71	0.051	10.094	0.30	-106.98
10	0.84	155.83	2.33	43.12	0.049	8.831	0.31	-111.51
11	0.85	150.15	2.08	37.02	0.048	9.020	0.33	-116.26
12	0.86	146.03	1.86	31.78	0.046	9.038	0.34	-119.38
13	0.87	141.12	1.67	26.35	0.045	9.686	0.35	-123.53
14	0.89	137.47	1.52	21.34	0.045	9.837	0.37	-128.98
15	0.90	134.65	1.39	17.24	0.045	11.047	0.38	-131.05
16	0.91	131.13	1.28	12.51	0.046	11.134	0.40	-134.67
17	0.92	127.82	1.19	7.56	0.047	10.856	0.42	-138.64
18	0.92	125.14	1.10	2.79	0.047	9.956	0.44	-141.24
19	0.93	120.98	1.02	-2.09	0.049	9.789	0.45	-143.25
20	0.93	119.34	0.95	-6.78	0.051	7.389	0.47	-147.74
21	0.93	117.00	0.88	-10.66	0.051	8.789	0.48	-150.89
22	0.92	114.60	0.81	-14.89	0.054	8.633	0.49	-154.89
23	0.93	113.16	0.76	-18.59	0.055	9.580	0.52	-158.03
24	0.92	111.43	0.70	-22.44	0.056	9.195	0.52	-161.04
25	0.92	109.91	0.64	-25.94	0.055	11.221	0.54	-165.44
26	0.93	109.66	0.59	-28.89	0.056	15.488	0.55	-168.02

Note: S-parameters include bond wires. Reference planes are at edge of substrates shown on "Wire Bonding Information" figure below.

Wire Bonding Information

Follow the wire bonding diagrams recommended by BeRex below to achieve optimum device performance. BeRex recommends thermo-compression wedge bonding. As a general rule, bonding temperature should be kept to a maximum of 280°C for no longer than 2 minutes for all bonding wires. Ultrasonic bonding is not recommended.

Bonding Wire information

- 1. Gate to input transmission line
 - Length and Height: 400 um and 250 um
 - Number of wire: 2 wire
- 2. Drain to output transmission line
 - Length and Height: 350 um and 250 um
 - Number of wire : 2 wire
- 3. Source to ground plate
 - Length and Height: 200 um and 250 um
 - Number of wire: 6 wires
- X The diameter of bonding wires: 1 mil

Proper ESD procedures should be followed when handling this device.

DIE ATTACH RECOMMENDATIONS:

BeRex recommends the "Eutectic" die attach using Au-Sn (80%-20%) pre-forms. The die attach station must have accurate temperature control, and the operation should be performed with parts no hotter than 300°C for less than 10 seconds. An inert forming gas (90% N₂-10% H₂) or clean, dry N₂ should be used.

HANDLING PRECAUTIONS:

GaAs FETs are very sensitive to and may be damaged by Electrostatic Discharge (ESD). Therefore, proper ESD precautions must be taken whenever you are handling these devices. It is critically important that all work surfaces, and assembly equipment, as well as the operator be properly grounded when handling these devices to prevent ESD damage.

STORAGE & SHIPPING:

BeRex's standard chip device shipping package consists of an antistatic "Gel-Pak", holding the chips, placed inside a sealed antistatic and moisture barrier bag. This packaging is designed to provide a reasonable measure of protection from both mechanical and ESD damage.

Chip devices should be stored in a clean, dry Nitrogen gas environment at room temperature until they are required for assembly. Only open the shipping package or perform die assembly in a work area with a class 10,000 or better clean room environment to prevent contamination of the exposed devices.

CAUTION:

THIS PRODUCT CONTAINS GALLIUM ARSENIDE (GaAs) WHICH CAN BE HAZARDOUS TO THE HUMAN BODY AND THE ENVIRONMENT. THEREFORE, IT MUST BE HANDLED WITH CARE AND IN ACCORDANCE WITH ALL GOVERNMENTAL AND COMPANY REGULATIONS FOR THE SAFE HANDLING AND DISPOSAL OF HAZARDOUS WASTE. DO NOT BURN, DESTROY, CUT, CRUSH OR CHEMICALLY DISSOLVE THE PRODUCT. DO NOT LICK THE PRODUCT OR IN ANY WAY ALLOW IT TO ENTER THE MOUTH. EXCLUDE THE PRODUCT FROM GENERAL INDUSTRIAL WASTE OR GARBAGE AND DISPOSE OF ONLY IN ACCORDANCE TO APPLICABLE LAWS AND/OR ORDINANCES

DISCLAIMER

BEREX RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. BEREX DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN.

LIFE SUPPORT POLICY

BEREX PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES WITHOUT THE EXPRESS WRITTEN APPROVAL OF BEREX.

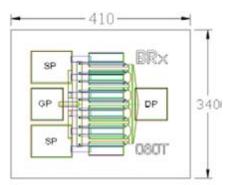
- 1. Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ROHS COMPLIANT

For complete specifications, S-parameters and information on bonding and handling, visited our website; www.berex.com

BCP080T

HIGH EFFICIENCY HETEROJUNCTION POWER FET CHIP (.25μm x 800μm)


The BeRex BCP080T is a GaAs Power pHEMT with a nominal 0.25 micron gate length and 800 micron gate width making the product ideally suited for amplifier applications where high-gain and medium power from DC to 26 GHz. The product may be used in either wideband or narrow-band applications. The BCP080T is produced using state of the art metallization with SI₃N₄ passivation and is screened to assure reliability.

PRODUCT FEATURES

- 30 dBm Typical Output Power
- 10.5 dB Typical Gain @ 12 GHz
- 60% PAE Typical @12 GHz
- 0.25 X 800 μm Recessed Gate
- Also available in 70 mil. ceramic package (BCP080T-70)

APPLICATIONS

- Commercial
- Military / Hi-Rel.
- Test & Measurement

Chip dimensions: 410 X 340 microns Gate pad(GP): 75 X 75 microns Drain pad(DP): 75 X 75 microns Source pad(SP): 95 X 75 microns Chip thickness: 100 microns

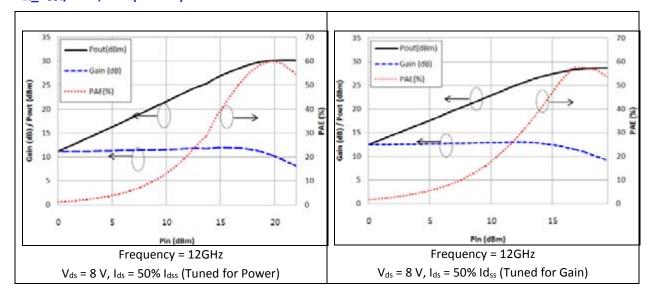
DC CHARACTERISTICS T_a = 25° C

SYMBOL	PARAMETER/TEST CONDITIONS	MIN.	TYPICAL	MAX.	UNIT
l _{dss}	Saturated Drain Current (Vgs = 0V, Vds = 1.0V)	160	240	320	mA
Gm	Transconductance (V _{ds} = 3V, V _{gs} = 50% I _{dss})		320		mS
V_p	Pinch-off Voltage (I_{ds} = 800 μ A, V_{ds} = 2V)	-2.5	-1.1	-0.5	V
BV_gd	Drain Breakdown Voltage (Igd = 0.8 mA, source open)		-15	-12	V
BV_gs	Source Breakdown Voltage (Ig = 0.8 mA, drain open)		-13		V
R _{th}	Thermal Resistance (Au-Sn Eutectic Attach)		61		°C/W

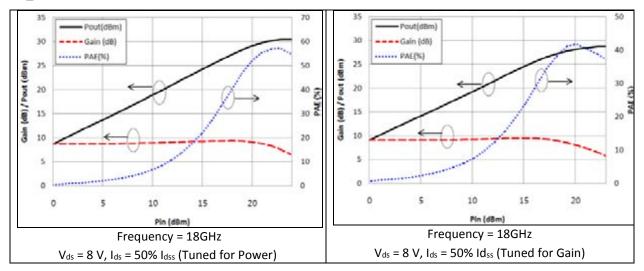
ELECTRICAL CHARACTERISTIC (TUNED FOR POWER) Ta = 25° C

SYMBOL	PARAMETER/TEST CONDITIONS	TEST FREQ.	MIN.	TYPICAL	MAX.	UNIT
P _{1dB} Output Power @ P _{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\% I_{dss}$)	12 GHz	29.0	30.0		dBm	
	18 GHz		30.0		ubili	
C .	Coin @ D . (V 8V. L F00/ L.)	12 GHz	9.5	10.5		dB
G _{1dB}	Gain @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\% I_{dss}$)	18 GHz		7.5		ив
DAE	DAT			60		%
PAE PAE @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\%$ I_{dss})	18 GHz		55		%	

ELECTRICAL CHARACTERISTIC (TUNED FOR GAIN) Ta = 25° C


SYMBOL	PARAMETER/TEST CONDITIONS	TEST FREQ.	MIN.	TYPICAL	MAX.	UNIT
D .	Output Dower @ D . (V 9)/ L F09/ L.)	12 GHz	27.5	28.5		dBm
P _{1dB}	Output Power @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\%$ I_{dss})	18 GHz		28.0		ивт
C	Cain @ D (V	12 GHz	10.5	11.5		dB
G _{1dB}	Gain @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\% I_{dss}$)	18 GHz		8.0		ив
PAE	DAE @ D . (\/. = 8\/ . = E09/ . \	12 GHz		58		%
PAE	PAE @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\% I_{dss}$)	18 GHz		45		70

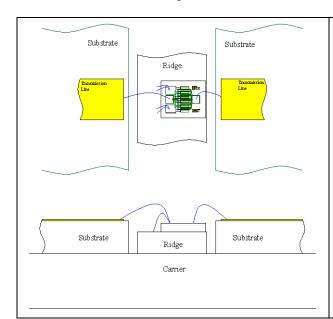
MAXIMUM RATING (Ta = 25°C)


SYMBOLS	PARAMETERS	ABSOLUTE	CONTINUOUS
V_{ds}	Drain-Source Voltage	12 V	8 V
V_{gs}	Gate-Source Voltage	-6 V	-3 V
I _{ds}	Drain Current	I_{dss}	l _{dss}
I _{gsf}	Forward Gate Current	40 mA	7 mA
Pin	Input Power	27 dBm	@ 3dB compression
T _{ch}	Channel Temperature	175° C	150° C
T_{stg}	Storage Temperature	-60° C - 150° C	-60° C - 150° C
Pt	Total Power Dissipation	3.0 W	2.5 W

Exceeding any of the above Maximum Ratings will result in reduced MTTF and may cause permanent damage to the device.

P_{IN}_P_{OUT}/Gain, PAE (12 GHz)

P_{IN}_P_{OUT}/Gain, PAE (18 GHz)


S-PARAMETER ($V_{ds} = 8V$, $I_{ds} = 50\% I_{dss}$)

FREQ.	S11	S11	S21	S21	S12	S12	S22	S22
[GHZ]	[MAG]	[ANG.]	[MAG]	[ANG.]	[MAG]	[ANG.]	[MAG]	[ANG.]
1	0.88	-76.19	15.20	133.42	0.024	52.92	0.33	-48.85
2	0.80	-122.05	10.28	107.10	0.026	39.88	0.23	-79.11
3	0.78	-150.41	7.46	90.51	0.028	32.53	0.18	-100.71
4	0.78	-169.11	5.73	78.17	0.032	27.33	0.15	-118.62
5	0.78	177.02	4.62	67.37	0.033	26.98	0.15	-135.40
6	0.79	165.27	3.82	57.85	0.037	26.66	0.16	-148.85
7	0.81	156.52	3.20	49.39	0.039	26.35	0.18	-160.17
8	0.82	147.81	2.79	41.06	0.040	27.57	0.20	-167.44
9	0.84	140.62	2.44	33.85	0.045	26.68	0.22	-176.73
10	0.84	134.26	2.17	26.58	0.048	26.40	0.24	177.83
11	0.86	126.33	1.94	18.60	0.052	24.32	0.26	171.10
12	0.87	119.77	1.73	10.95	0.054	22.92	0.29	165.39
13	0.89	114.17	1.56	4.42	0.056	20.74	0.32	158.94
14	0.89	107.48	1.41	-3.40	0.058	17.25	0.35	152.81
15	0.90	102.39	1.24	-10.36	0.061	15.12	0.39	146.64
16	0.92	98.18	1.12	-16.82	0.062	12.32	0.44	140.53
17	0.93	93.38	0.99	-24.48	0.063	7.68	0.48	135.58
18	0.93	92.33	0.86	-28.98	0.065	8.39	0.52	130.41
19	0.93	90.25	0.76	-34.74	0.064	6.46	0.56	125.87
20	0.94	86.43	0.67	-40.26	0.063	6.69	0.61	122.41
21	0.95	87.08	0.57	-43.33	0.064	4.00	0.64	119.62
22	0.94	88.18	0.51	-46.45	0.063	3.40	0.66	117.23
23	0.94	87.44	0.44	-49.43	0.064	2.63	0.70	115.29
24	0.94	90.11	0.39	-50.10	0.064	1.51	0.73	114.62
25	0.94	91.60	0.35	-52.21	0.061	4.83	0.75	113.64
26	0.95	90.36	0.31	-52.11	0.058	10.58	0.76	114.36

 $Note: S-parameters \ include \ bond \ wires. \ \textit{Reference planes are at edge of substrates shown on "Wire Bonding Information" figure \ below.$

WIRE BONDING INFORMATION

Follow the wire bonding diagrams recommended by BeRex below to achieve optimum device performance. BeRex recommends thermo-compression wedge bonding. As a general rule, bonding temperature should be kept to a maximum of 280°C for no longer than 2 minutes for all bonding wires. Ultrasonic bonding is not recommended.

Using 1 mil. diameter, Au bonding wires.

- 1. Gate to input transmission line
- Length and Height: 600 μm x 250 μm
- Number of wire(s): 1
- 2. Drain to output transmission line
- Length and Height: 400 μm x 250 μm
- Number of wire(s): 1
- 3. Source to ground plate
- Length and Height: 250 μm x 300 μm
- Number of wire(s): 4

Proper ESD procedures should be followed when handling this device.

DIE ATTACH RECOMMENDATIONS:

BeRex recommends the "Eutectic" die attach using Au-Sn (80%-20%) pre-forms. The die attach station must have accurate temperature control, and the operation should be performed with parts no hotter than 300°C for less than 10 seconds. An inert forming gas (90% N₂-10% H₂) or clean, dry N₂ should be used.

HANDLING PRECAUTIONS:

GaAs FETs are very sensitive to and may be damaged by Electrostatic Discharge (ESD). Therefore, proper ESD precautions must be taken whenever you are handling these devices. It is critically important that all work surfaces, and assembly equipment, as well as the operator be properly grounded when handling these devices to prevent ESD damage.

STORAGE & SHIPPING:

BeRex's standard chip device shipping package consists of an antistatic "Gel-Pak", holding the chips, placed inside a sealed antistatic and moisture barrier bag. This packaging is designed to provide a reasonable measure of protection from both mechanical and ESD damage.

Chip devices should be stored in a clean, dry Nitrogen gas environment at room temperature until they are required for assembly. Only open the shipping package or perform die assembly in a work area with a class 10,000 or better clean room environment to prevent contamination of the exposed devices.

CAUTION:

THIS PRODUCT CONTAINS GALLIUM ARSENIDE (GaAs) WHICH CAN BE HAZARDOUS TO THE HUMAN BODY AND THE ENVIRONMENT. THEREFORE, IT MUST BE HANDLED WITH CARE AND IN ACCORDANCE WITH ALL GOVERNMENTAL AND COMPANY REGULATIONS FOR THE SAFE HANDLING AND DISPOSAL OF HAZARDOUS WASTE. DO NOT BURN, DESTROY, CUT, CRUSH OR CHEMICALLY DISSOLVE THE PRODUCT. DO NOT LICK THE PRODUCT OR IN ANY WAY ALLOW IT TO ENTER THE MOUTH. EXCLUDE THE PRODUCT FROM GENERAL INDUSTRIAL WASTE OR GARBAGE AND DISPOSE OF ONLY IN ACCORDANCE TO APPLICABLE LAWS AND/OR ORDINANCES.

DISCLAIMER

BEREX RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. BEREX DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN.

LIFE SUPPORT POLICY

BEREX PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES WITHOUT THE EXPRESS WRITTEN APPROVAL OF BEREX.

- 1. Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

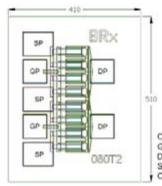
Rohs Compliant

For complete specifications, S-parameters and information on bonding and handling, visited our

website; www.berex.com

BCP080T2

HIGH EFFICIENCY HETEROJUNCTION POWER FET CHIP (.25μm x 800μm)


The BeRex BCP080T2 is a GaAs Power pHEMT with a nominal 0.25 micron gate length and 800 micron gate width making it ideally suited for applications requiring high-gain and medium power in the 1000 MHz to 27.5 GHz frequency range. The product may be used in either wideband (6-18 GHz) or narrow-band applications. The BCP080T2 is produced using state of the art metallization with SI₃N₄ passivation and is screened to assure reliability.

PRODUCT FEATURES

- 30 dBm Typical Output Power
- 11.5 dB Typical Power Gain @ 12 GHz
- 0.25 X 800 Micron Recessed Gate
- 2 Gate Pads / 2 Drain Pads

APPLICATIONS

- Commercial
- Military / Hi-Rel
- Test & Measurement

Chip dimensions : 410 X 510 microns-Gate pad(GP) : 75 X 75 microns Drain pad(DP) : 75 X 75 microns Source pad(SP) : 95 X 75 microns Chip thickness : 100 microns

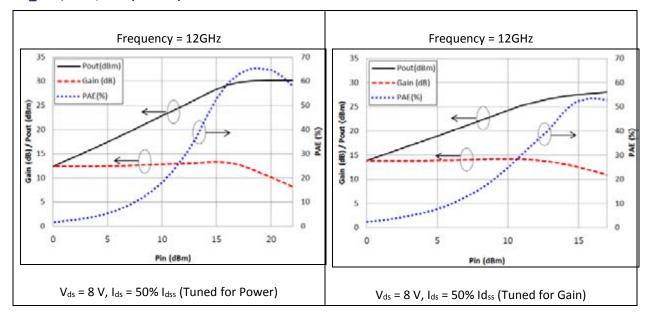
DC CHARACTERISTICS T_a = 25° C

SYMBOL	PARAMETER/TEST CONDITIONS	MIN.	TYPICAL	MAX.	UNIT
l _{dss}	Saturated Drain Current (Vgs = 0V, Vds = 1.0V)	160	240	320	mA
G _m	Transconductance ($V_{ds} = 3V$, $V_{gs} = 50\% I_{dss}$)		320		mS
Vp	Pinch-off Voltage (I _{ds} = 800 μA, V _{ds} = 2V)	-2.5	-1.1	-0.5	V
BV _{gd}	Drain Breakdown Voltage (Igd = 0.8 mA, source open)		-16	-12	V
BV _{gs}	Source Breakdown Voltage (Ig = 0.8 mA, drain open)		-14		V
R _{th}	Thermal Resistance (Au-Sn Eutectic Attach)		55		°C/W

ELECTRICAL CHARACTERISTIC (TUNED FOR POWER) Ta = 25° C

SYMBOL	PARAMETER/TEST CONDITIONS	TEST FREQ.	MIN.	TYPICAL	MAX.	UNIT
P _{1dB}	Output Power @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\%$ I_{dss})	12 GHz	28.5	30.0		dBm
P1dB	Output Power @ PidB (Vds - 8V, ids - 50% idss)	18 GHz	28.0	29.5		иын
G _{1dB}	Cain @ D . (V. = 9V L = E0% L)	12 GHz	10.5	11.5		dB
G _{1dB}	Gain @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\% I_{dss}$)	18 GHz	8.5	9.5		ив
PAE	DAE @ D (\/. = 8\/ . = E09/ . \	12 GHz		65		%
PAE	PAE @ P _{1dB} (V _{ds} = 8V, I _{ds} = 50% I _{dss})	18 GHz		60		70

ELECTRICAL CHARACTERISTIC (TUNED FOR GAIN) Ta = 25° C


SYMBOL	PARAMETER/TEST CONDITIONS	TEST FREQ.	MIN.	TYPICAL	MAX.	UNIT
P _{1dB}	Output Dowor @ D (V 9)/ L 50% L.)	12 GHz	26.0	27.5		dBm
P1dB	Output Power @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\%$ I_{dss})	18 GHz	27.5	29.0		ивт
G _{1dB}	Gain @ P _{1dB} (V _{ds} = 8V, I _{ds} = 50% I _{dss})	12 GHz	12.0	13.0		dB
G1dB	Gaill @ P1dB (Vds - 8V, lds - 50% ldss)	18 GHz	9.0	10.0		иь
PAE	PAE @ P _{1dB} (V _{ds} = 8V, I _{ds} = 50% I _{dss})	12 GHz		50		%
FAE	FAL @ F1dB (Vds - OV, Ids - 50% Idss)	18 GHz		55		/0

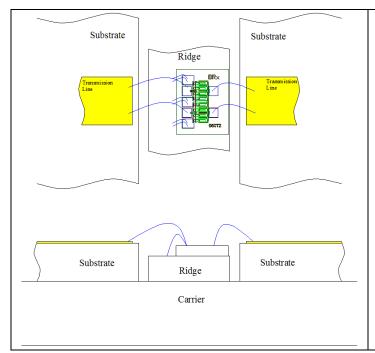
MAXIMUM RATING (Ta = 25°C)

SYMBOLS	PARAMETERS	ABSOLUTE	CONTINUOUS
V_{ds}	Drain-Source Voltage	12 V	8 V
V_{gs}	Gate-Source Voltage	-8 V	-3 V
I _{ds}	Drain Current	l _{dss}	I_{dss}
I _{gsf}	Forward Gate Current	40 mA	7 mA
Pin	Input Power	27 dBm	@ 3dB compression
T _{ch}	Channel Temperature	175° C	150° C
T_{stg}	Storage Temperature	-60° C - 150° C	-60° C - 150° C
Pt	Total Power Dissipation	2.5 W	2.1 W

Exceeding any of the above Maximum Ratings will result in reduced MTTF and may cause permanent damage to the device.

P_{IN}_P_{OUT}/Gain, PAE (12 GHz)

P_{IN}_P_{OUT}/Gain, PAE (18 GHz)


S-PARAMETER ($V_{ds} = 8V$, $I_{ds} = 50\% I_{dss}$)

FREQ.	S11	S11	S21	S21	S12	S12	S22	S22
[GHZ]	[MAG]	[ANG.]	[MAG]	[ANG.]	[MAG]	[ANG.]	[MAG]	[ANG.]
1	0.90	-80.81	14.18	132.87	0.034	48.617	0.35	-53.62
2	0.86	-122.78	9.47	109.07	0.045	31.997	0.27	-81.38
3	0.84	-145.71	6.86	94.32	0.048	24.841	0.24	-97.12
4	0.84	-161.07	5.31	83.42	0.049	20.743	0.22	-106.56
5	0.84	-171.88	4.31	74.30	0.049	19.202	0.22	-115.48
6	0.84	179.59	3.61	66.44	0.049	18.561	0.22	-120.27
7	0.84	172.04	3.09	59.24	0.049	17.423	0.23	-125.61
8	0.85	165.30	2.69	52.08	0.049	18.330	0.24	-131.87
9	0.85	159.07	2.37	45.42	0.049	18.362	0.26	-136.95
10	0.86	152.97	2.10	38.83	0.048	18.850	0.27	-143.16
11	0.87	147.86	1.87	32.61	0.047	19.849	0.30	-148.66
12	0.88	144.05	1.67	27.23	0.047	20.641	0.32	-152.94
13	0.89	140.19	1.51	21.68	0.047	19.988	0.34	-158.21
14	0.90	136.46	1.37	16.47	0.048	20.783	0.38	-163.20
15	0.91	133.41	1.25	11.89	0.049	21.641	0.40	-165.72
16	0.92	129.89	1.14	6.67	0.049	20.932	0.43	-169.28
17	0.93	125.68	1.06	1.22	0.052	20.105	0.47	-172.45
18	0.93	123.10	0.97	-3.65	0.052	19.082	0.50	-174.65
19	0.94	119.63	0.89	-8.89	0.054	17.318	0.51	-177.15
20	0.94	117.10	0.81	-14.03	0.056	16.112	0.54	179.71
21	0.94	115.14	0.75	-17.90	0.058	17.116	0.56	176.92
22	0.93	113.43	0.68	-21.85	0.060	16.972	0.58	173.39
23	0.94	111.85	0.63	-25.51	0.062	15.759	0.61	170.90
24	0.93	110.84	0.58	-29.25	0.062	13.961	0.62	167.56
25	0.93	110.43	0.52	-32.33	0.062	16.654	0.63	163.31
26	0.94	109.70	0.48	-34.96	0.063	20.335	0.65	160.51

Note: S-parameters include bond wires. Reference planes are at edge of substrates shown on "Wire Bonding Information" figure below.

WIRE BONDING INFORMATION

Follow the wire bonding diagrams recommended by BeRex below to achieve optimum device performance. BeRex recommends thermo-compression wedge bonding. As a general rule, bonding temperature should be kept to a maximum of 280°C for no longer than 2 minutes for all bonding wires. Ultrasonic bonding is not recommended.

Bonding Wire information

- 1. Gate to input transmission line
 - Length and Height: 400 um and 250 um
 - Number of wire: 2 wire
- 2. Drain to output transmission line
 - Length and Height: 300 um and 250 um
 - Number of wire : 2 wire
- 3. Source to ground plate
 - Length and Height: 200 um and 250 um
 - Number of wire: 6 wires
- X The diameter of bonding wires: 1 mil.

 $Proper\, ESD\ procedures\ should\ be\ followed\ when\ handling\ this\ device.$

DIE ATTACH RECOMMENDATIONS:

BeRex recommends the "Eutectic" die attach using Au-Sn (80%-20%) pre-forms. The die attach station must have accurate temperature control, and the operation should be performed with parts no hotter than 300°C for less than 10 seconds. An inert forming gas (90% N_2 -10% H_2) or clean, dry N_2 should be used.

HANDLING PRECAUTIONS:

GaAs FETs are very sensitive to and may be damaged by Electrostatic Discharge (ESD). Therefore, proper ESD precautions must be taken whenever you are handling these devices. It is critically important that all work surfaces, and assembly equipment, as well as the operator be properly grounded when handling these devices to prevent ESD damage.

STORAGE & SHIPPING:

BeRex's standard chip device shipping package consists of an antistatic "Gel-Pak", holding the chips, placed inside a sealed antistatic and moisture barrier bag. This packaging is designed to provide a reasonable measure of protection from both mechanical and ESD damage.

Chip devices should be stored in a clean, dry Nitrogen gas environment at room temperature until they are required for assembly. Only open the shipping package or perform die assembly in a work area with a class 10,000 or better clean room environment to prevent contamination of the exposed devices.

CAUTION:

THIS PRODUCT CONTAINS GALLIUM ARSENIDE (GaAs) WHICH CAN BE HAZARDOUS TO THE HUMAN BODY AND THE ENVIRONMENT. THEREFORE, IT MUST BE HANDLED WITH CARE AND IN ACCORDANCE WITH ALL GOVERNMENTAL AND COMPANY REGULATIONS FOR THE SAFE HANDLING AND DISPOSAL OF HAZARDOUS WASTE. DO NOT BURN, DESTROY, CUT, CRUSH OR CHEMICALLY DISSOLVE THE PRODUCT. DO NOT LICK THE PRODUCT OR IN ANY WAY ALLOW IT TO ENTER THE MOUTH. EXCLUDE THE PRODUCT FROM GENERAL INDUSTRIAL WASTE OR GARBAGE AND DISPOSE OF ONLY IN ACCORDANCE TO APPLICABLE LAWS AND/OR ORDINANCES.

DISCLAIMER

BEREX RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. BEREX DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN.

LIFE SUPPORT POLICY

BEREX PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES WITHOUT THE EXPRESS WRITTEN APPROVAL OF BEREX.

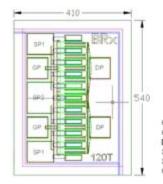
- 1. Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

For complete specifications, S-parameters and information on bonding and handling, visited our website;

www.berex.com

BCP120T

HIGH EFFICIENCY HETEROJUNCTION POWER FET CHIP (.25μm x 1200μm)


The BeRex BCP120T is a GaAs Power pHEMT with a nominal 0.25 micron gate length and 1200 micron gate width making the product ideally suited for amplifier applications where high-gain and medium power from DC to 26 GHz. The product may be used in either wideband or narrow-band applications. The BCP120T is produced using state of the art metallization with Sl₃N₄ passivation and is screened to assure reliability.

PRODUCT FEATURES

- 32 dBm Typical Output Power
- 11 dB Typical Gain @ 12 GHz
- 60% PAE Typical @12 GHz
- 0.25 X 1200 μm Recessed Gate

APPLICATIONS

- Commercial
- Military / Hi-Rel.
- Test & Measurement

Chip dimensions: 410 X 540 microns Gate pad(GP): 75 X 75 microns Drain pad(DP): 75 X 75 microns Source pad1(SP1): 95 X 75 microns Source pad2(SP2): 95 X 110 microns Chip thickness: 100 microns

DC CHARACTERISTICS T_a = 25° C

SYMBOL	PARAMETER/TEST CONDITIONS	MIN.	TYPICAL	MAX.	UNIT
l _{dss}	Saturated Drain Current (Vgs = 0V, Vds = 1.0V)	240	360	480	mA
Gm	Transconductance (V _{ds} = 2V, V _{gs} = 50% I _{dss})		480		mS
V_p	Pinch-off Voltage (I _{ds} = 1.2 mA, V _{ds} = 2V)	-2.5	-1.1	-0.5	V
BV_gd	Drain Breakdown Voltage (Igd = 0.8 mA, source open)		-15	-12	٧
BV_gs	Source Breakdown Voltage (Ig = 0.8 mA, drain open)		-13		V
R _{th}	Thermal Resistance (Au-Sn Eutectic Attach)		41		°C/W

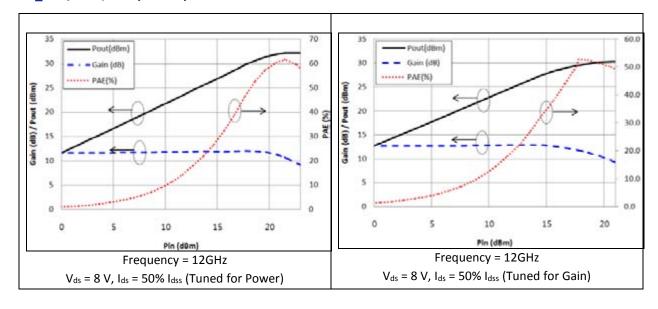
ELECTRICAL CHARACTERISTICS (TUNED FOR POWER) Ta = 25° C

SYMBOL	PARAMETER/TEST CONDITIONS	TEST FREQ.	MIN.	TYPICAL	MAX.	UNIT
P _{1dB}	Output Power @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\%$ I_{dss})	12 GHz	31.0	32.0		dBm
		18 GHz		32.0		UDIII
-	Coin @ D ()/ 0)/ F00/)	12 GHz	10.0	11.0		40
G _{1dB}	Gain @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\% I_{dss}$)	18 GHz		8.0		dB
DAF	DAT @ D ()/ 0)/ F00/)	12 GHz		60		0/
PAE	PAE @ P _{1dB} (V _{ds} = 8V, I _{ds} = 50% I _{dss})	18 GHz		55		%

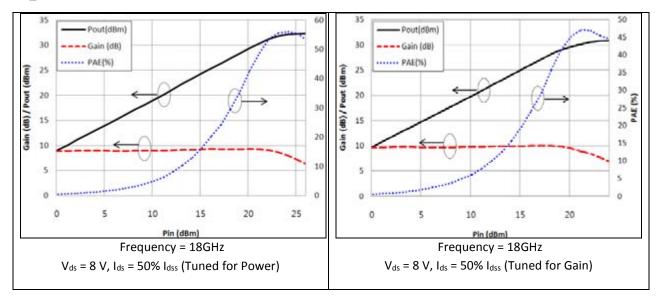
BeRex, Inc. 3350 Scot Blvd. #61-01 Santa Clara, CA 95054 tel. (408) 452-5595

January 2015

ELECTRICAL CHARACTERISTICS (TUNED FOR GAIN) Ta = 25° C


SYMBOL	PARAMETER/TEST CONDITIONS	TEST FREQ.	MIN.	TYPICAL	MAX.	UNIT
P _{1dB}	Output Power @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\%$ I_{dss})	12 GHz	29.0	30.0		dBm
		18 GHz		30.0		ubili
-	Gain @ P _{1dB} (V _{ds} = 8V, I _{ds} = 50% I _{dss})	12 GHz	11.0	12.0		٩D
G _{1dB}		18 GHz		9.0		dB
DAE	DAT @ D (V 0V 1 F00/ 1)	12 GHz		50		0/
PAE	PAE @ P _{1dB} (V _{ds} = 8V, I _{ds} = 50% I _{dss})	18 GHz		45		%

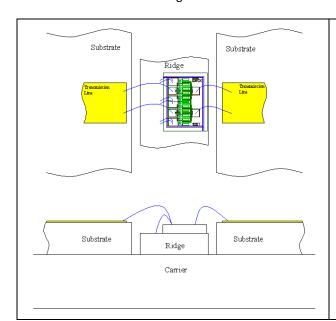
MAXIMUM RATINGS (Ta = 25°C)


SYMBOL	PARAMETERS	ABSOLUTE	CONTINUOUS
V _{ds}	Drain-Source Voltage	12 V	8 V
V_{gs}	Gate-Source Voltage	-6 V	-3 V
l _{ds}	Drain Current	l _{dss}	l _{dss}
I _{gsf}	Forward Gate Current	60 mA	10 mA
P _{in}	Input Power	29 dBm	@ 3dB compression
T_ch	Channel Temperature	175° C	150° C
T_{stg}	Storage Temperature	-60° C - 150° C	-60° C - 150° C
Pt	Total Power Dissipation	4.9 W	4.1 W

Exceeding any of the above Maximum Ratings will result in reduced MTTF and may cause permanent damage to the device.

P_{IN}_P_{OUT}/Gain, PAE (12 GHz)

P_{IN}_P_{OUT}/Gain, PAE (18 GHz)


S-PARAMETER ($V_{ds} = 8V$, $I_{ds} = 50\% I_{dss}$)

FREQ.	S11	S11	S21	S21	S12	S12	S22	S22
[GHZ]	[MAG]	[ANG.]	[MAG]	[ANG.]	[MAG]	[ANG.]	[MAG]	[ANG.]
1	0.87	-107.97	14.78	119.26	0.032	41.51	0.27	-114.33
2	0.84	-145.40	8.59	97.61	0.038	33.64	0.28	-143.90
3	0.84	-163.59	5.95	85.22	0.040	30.50	0.30	-155.42
4	0.84	-174.83	4.52	75.95	0.045	31.72	0.31	-160.78
5	0.84	176.68	3.62	67.51	0.045	33.32	0.32	-164.63
6	0.85	169.41	3.01	59.98	0.048	34.78	0.34	-167.42
7	0.86	163.34	2.53	52.95	0.050	36.49	0.36	-170.61
8	0.86	157.55	2.21	46.07	0.051	39.56	0.37	-172.00
9	0.87	152.27	1.95	40.15	0.055	38.30	0.39	-175.10
10	0.88	147.45	1.74	34.08	0.057	39.28	0.41	-177.55
11	0.88	142.20	1.56	27.88	0.062	38.46	0.43	179.73
12	0.89	137.21	1.41	21.58	0.063	36.94	0.45	177.54
13	0.90	132.89	1.28	16.17	0.066	37.28	0.47	174.32
14	0.91	128.43	1.15	10.37	0.066	36.24	0.49	171.27
15	0.92	124.72	1.04	5.09	0.068	34.24	0.52	167.79
16	0.93	121.32	0.96	-0.15	0.070	32.48	0.55	164.44
17	0.93	118.18	0.86	-5.87	0.071	30.66	0.58	160.90
18	0.94	115.66	0.77	-10.08	0.069	26.37	0.60	157.59
19	0.94	114.16	0.69	-14.84	0.071	27.07	0.62	153.96
20	0.94	111.93	0.62	-19.23	0.074	25.55	0.65	151.27
21	0.95	110.61	0.56	-22.40	0.075	23.86	0.67	148.70
22	0.94	110.14	0.50	-26.10	0.078	22.88	0.69	146.17
23	0.94	109.48	0.45	-28.36	0.075	21.58	0.71	143.44
24	0.94	109.46	0.41	-30.96	0.076	20.17	0.74	141.85
25	0.95	109.38	0.37	-32.98	0.075	18.97	0.75	140.00
26	0.94	108.63	0.33	-34.75	0.074	21.22	0.76	139.27

Note: S-parameters include bond wires. Reference planes are at edge of substrates shown on "Wire Bonding Information" figure below.

WIRE BONDING INFORMATION

Follow the wire bonding diagrams recommended by BeRex below to achieve optimum device performance. BeRex recommends thermo-compression wedge bonding. As a general rule, bonding temperature should be kept to a maximum of 280°C for no longer than 2 minutes for all bonding wires. Ultrasonic bonding is not recommended.

Using 1 mil. diameter, Au bonding wires.

- 1. Gate to input transmission line
 - Length and Height: 600 μm x 250 μm
 - Number of wire(s): 2
- 2. Drain to output transmission line
 - Length and Height : 400 μm x 250 μm
 - Number of wire(s): 2
- 3. Source to ground plate
 - Length and Height: 250 μm x 300 μm
 - Number of wire(s): 6

Proper ESD procedures should be followed when handling this device.

DIE ATTACH RECOMMENDATIONS:

BeRex recommends the "Eutectic" die attach using Au-Sn (80%-20%) pre-forms. The die attach station must have accurate temperature control, and the operation should be performed with parts no hotter than 300°C for less than 10 seconds. An inert forming gas (90% N₂-10% H₂) or clean, dry N₂ should be used.

HANDLING PRECAUTIONS:

GaAs FETs are very sensitive to and may be damaged by Electrostatic Discharge (ESD). Therefore, proper ESD precautions must be taken whenever you are handling these devices. It is critically important that all work surfaces, and assembly equipment, as well as the operator be properly grounded when handling these devices to prevent ESD damage.

STORAGE & SHIPPING:

BeRex's standard chip device shipping package consists of an antistatic "Gel-Pak", holding the chips, placed inside a sealed antistatic and moisture barrier bag. This packaging is designed to provide a reasonable measure of protection from both mechanical and ESD damage.

Chip devices should be stored in a clean, dry Nitrogen gas environment at room temperature until they are required for assembly. Only open the shipping package or perform die assembly in a work area with a class 10,000 or better clean room environment to prevent contamination of the exposed devices.

CAUTION:

THIS PRODUCT CONTAINS GALLIUM ARSENIDE (GaAs) WHICH CAN BE HAZARDOUS TO THE HUMAN BODY AND THE ENVIRONMENT. THEREFORE, IT MUST BE HANDLED WITH CARE AND IN ACCORDANCE WITH ALL GOVERNMENTAL AND COMPANY REGULATIONS FOR THE SAFE HANDLING AND DISPOSAL OF HAZARDOUS WASTE. DO NOT BURN, DESTROY, CUT, CRUSH OR CHEMICALLY DISSOLVE THE PRODUCT. DO NOT LICK THE PRODUCT OR IN ANY WAY ALLOW IT TO ENTER THE MOUTH. EXCLUDE THE PRODUCT FROM GENERAL INDUSTRIAL WASTE OR GARBAGE AND DISPOSE OF ONLY IN ACCORDANCE TO APPLICABLE LAWS AND/OR ORDINANCES.

DISCLAIMER

BEREX RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. BEREX DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN.

LIFE SUPPORT POLICY

BEREX PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES WITHOUT THE EXPRESS WRITTEN APPROVAL OF BEREX.

- 1. Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

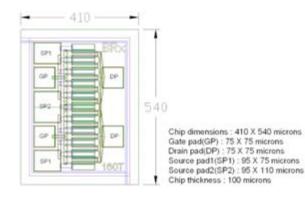
ROHS COMPLIANT

For complete specifications, S-parameters and information on bonding and handling, visited our

website; www.berex.com

BCP160T

HIGH EFFICIENCY HETEROJUNCTION POWER FET CHIP (.25μm x 1600μm)


The BeRex BCP160T is a GaAs Power pHEMT with a nominal 0.25 micron gate length and 1600 micron gate width making the product ideally suited for amplifier applications where high-gain and medium power from DC to 26 GHz. The product may be used in either wideband or narrow-band applications. The BCP160T is produced using state of the art metallization with Sl_3N_4 passivation and is screened to assure reliability.

PRODUCT FEATURES

- 33 dBm Typical Output Power
- 10.5 dB Typical Gain @ 12 GHz
- 60% PAE Typical @12 GHz
- 0.25 X 1600 μm Recessed Gate

APPLICATIONS

- Commercial
- Military / Hi-Rel.
- Test & Measurement

DC CHARACTERISTICS T_a = 25° C

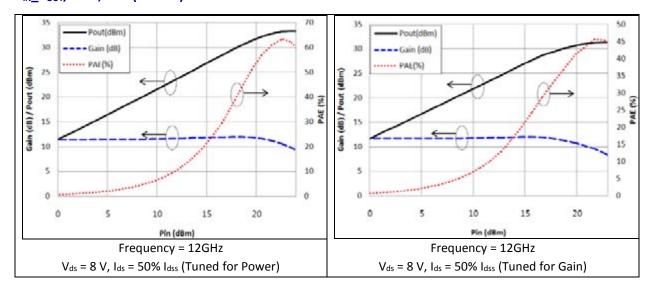
SYMBOL	PARAMETER/TEST CONDITIONS	MIN.	TYPICAL	MAX.	UNIT
l _{dss}	Saturated Drain Current (Vgs = 0V, Vds = 1.0V)	320	480	640	mA
Gm	Transconductance (V _{ds} = 3V, V _{gs} = 50% I _{dss})		640		mS
V_p	Pinch-off Voltage (I _{ds} = 1.6 mA, V _{ds} = 2V)	-2.5	-1.1	-0.5	V
BV_gd	Drain Breakdown Voltage (Igd = 1.6 mA, source open)		-15	-12	V
BV_gs	Source Breakdown Voltage (Ig = 1.6 mA, drain open)		-13		٧
R _{th}	Thermal Resistance (Au-Sn Eutectic Attach)		33		° C/W

ELECTRICAL CHARACTERISTICS (TUNED FOR POWER) T_a = 25° C

SYMBOL	PARAMETER/TEST CONDITIONS	TEST FREQ.	MIN.	TYPICAL	MAX.	UNIT	
P _{1dB}	Output Power @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\% I_{dss}$)	12 GHz	32.0	33.2		dBm	
		18 GHz		33.0			
6	Gain @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\% I_{dss}$)	12 GHz	9.5	10.4		dB	
G _{1dB}		18 GHz		6.7			
PAE	DAE @ D (\/. = 8\/ 1. = E09/ 1. \)	12 GHz		63		%	
PAE	PAE @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\%$ I_{dss})	18 GHz		47		70	

BeRex, Inc. 3350 Scot Blvd. #61-01 Santa Clara, CA 95054 tel. (408) 452-5595

ELECTRICAL CHARACTERISTICS (TUNED FOR GAIN) Ta = 25° C

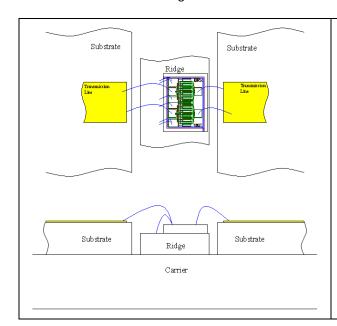

SYMBOL	PARAMETER/TEST CONDITIONS	TEST FREQ.	MIN.	TYPICAL	MAX.	UNIT
P _{1dB}	Output Power @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\%$ I_{dss})	12 GHz	29.5	30.7		dBm
		18 GHz		30.1		ubili
6	Cain @ D ()/ 0)/ F00/)	12 GHz	10.0	10.8		40
G _{1dB}	Gain @ P _{1dB} (V _{ds} = 8V, I _{ds} = 50% I _{dss})	18 GHz		6.4		dB
DAE	DAE @ D (V/ds = 9)/ Ids = E09/ Idss)	12 GHz		41.0		%
PAE	PAE @ P_{1dB} (Vds = 8V, Ids = 50% Idss)	18 GHz		26.5		70

MAXIMUM RATINGS (T_a = 25^{\circ} C)

SYMBOL	PARAMETERS	ABSOLUTE	CONTINUOUS
V _{ds}	Drain-Source Voltage	12 V	8 V
V_{gs}	Gate-Source Voltage	-6 V	-3 V
l _{ds}	Drain Current	l _{dss}	l _{dss}
I _{gsf}	Forward Gate Current	80 mA	14 mA
Pin	Input Power	30 dBm	@ 3 dB Compression
T _{ch}	Channel Temperature	175° C	150° C
T _{stg}	Storage Temperature	-60° C - 150° C	-60° C - 150° C
Pt	Total Power Dissipation	6.0 W	5.0 W

Exceeding any of the above Maximum Ratings will result in reduced MTTF and may cause permanent damage to the device.

P_{IN}_P_{OUT}/Gain, PAE (12 GHz)


S-PARAMETERS ($V_{ds} = 8V$, $I_{ds} = 50\% I_{dss}$)

FREQ.	S11	S11	S21	S21	S12	S12	S22	S22
[GHZ]	[MAG]	[ANG.]	[MAG]	[ANG.]	[MAG]	[ANG.]	[MAG]	[ANG.]
1	0.87	-125.38	13.67	111.02	0.029	37.07	0.34	-144.18
2	0.85	-156.37	7.50	92.04	0.034	32.44	0.36	-161.51
3	0.86	-171.07	5.11	80.78	0.036	33.73	0.37	-168.21
4	0.86	-179.89	3.86	72.20	0.040	34.70	0.38	-172.01
5	0.87	173.17	3.08	64.03	0.043	38.64	0.40	-174.55
6	0.87	167.14	2.55	56.79	0.047	40.81	0.42	-177.15
7	0.88	162.28	2.14	50.07	0.048	40.71	0.44	-179.70
8	0.88	157.56	1.88	43.01	0.050	45.15	0.45	178.62
9	0.89	152.94	1.65	37.28	0.055	45.37	0.47	175.28
10	0.89	148.80	1.48	31.07	0.060	44.07	0.49	172.74
11	0.89	143.76	1.33	24.59	0.062	42.96	0.51	169.96
12	0.90	138.90	1.20	18.21	0.066	41.21	0.53	167.35
13	0.91	134.97	1.09	12.85	0.070	39.95	0.55	163.90
14	0.91	129.80	0.99	6.58	0.071	38.03	0.58	161.41
15	0.92	125.36	0.89	0.82	0.073	35.59	0.61	158.02
16	0.93	121.84	0.81	-4.31	0.075	32.10	0.64	154.68
17	0.93	117.69	0.72	-10.60	0.073	29.92	0.66	151.79
18	0.95	115.85	0.63	-14.17	0.076	28.56	0.68	149.05
19	0.94	113.69	0.57	-18.70	0.076	27.06	0.71	145.91
20	0.94	110.54	0.52	-22.86	0.077	24.13	0.73	143.57
21	0.95	109.76	0.46	-26.30	0.077	24.61	0.75	141.51
22	0.94	110.02	0.41	-28.17	0.079	22.75	0.76	139.28
23	0.94	108.99	0.36	-31.53	0.080	22.44	0.77	136.86
24	0.94	110.06	0.33	-33.06	0.082	19.77	0.79	135.47
25	0.95	110.74	0.30	-34.59	0.077	20.11	0.80	133.59
26	0.95	110.24	0.27	-33.68	0.079	23.85	0.81	133.29

Note: S-parameters include bond wires. Reference planes are at edge of substrates shown on "Wire Bonding Information" figure below.

WIRE BONDING INFORMATION

Follow the wire bonding diagrams recommended by BeRex below to achieve optimum device performance. BeRex recommends thermo-compression wedge bonding. As a general rule, bonding temperature should be kept to a maximum of 280°C for no longer than 2 minutes for all bonding wires. Ultrasonic bonding is not recommended.

Using 1 mil. diameter, Au bonding wires.

- 1. Gate to input transmission line
 - Length and Height : 600 μm x 250 μm
 - Number of wire(s): 2
- 2. Drain to output transmission line
 - Length and Height: 400 μm x 250 μm
 - Number of wire(s): 2
- 3. Source to ground plate
 - Length and Height : 250 μm x 300 μm
 - Number of wire(s): 6

Proper ESD procedures should be followed when handling this device.

DIE ATTACH RECOMMENDATIONS:

BeRex recommends the "Eutectic" die attach using Au-Sn (80%-20%) pre-forms. The die attach station must have accurate temperature control, and the operation should be performed with parts no hotter than 300°C for less than 10 seconds. An inert forming gas (90% N₂-10% H₂) or clean, dry N₂ should be used.

HANDLING PRECAUTIONS:

GaAs FETs are very sensitive to and may be damaged by Electrostatic Discharge (ESD). Therefore, proper ESD precautions must be taken whenever you are handling these devices. It is critically important that all work surfaces, and assembly equipment, as well as the operator be properly grounded when handling these devices to prevent ESD damage.

STORAGE & SHIPPING:

BeRex's standard chip device shipping package consists of an antistatic "Gel-Pak", holding the chips, placed inside a sealed antistatic and moisture barrier bag. This packaging is designed to provide a reasonable measure of protection from both mechanical and ESD damage.

Chip devices should be stored in a clean, dry Nitrogen gas environment at room temperature until they are required for assembly. Only open the shipping package or perform die assembly in a work area with a class 10,000 or better clean room environment to prevent contamination of the exposed devices.

CAUTION:

THIS PRODUCT CONTAINS GALLIUM ARSENIDE (GaAs) WHICH CAN BE HAZARDOUS TO THE HUMAN BODY AND THE ENVIRONMENT. THEREFORE, IT MUST BE HANDLED WITH CARE AND IN ACCORDANCE WITH ALL GOVERNMENTAL AND COMPANY REGULATIONS FOR THE SAFE HANDLING AND DISPOSAL OF HAZARDOUS WASTE. DO NOT BURN, DESTROY, CUT, CRUSH OR CHEMICALLY DISSOLVE THE PRODUCT. DO NOT LICK THE PRODUCT OR IN ANY WAY ALLOW IT TO ENTER THE MOUTH. EXCLUDE THE PRODUCT FROM GENERAL INDUSTRIAL WASTE OR GARBAGE AND DISPOSE OF ONLY IN ACCORDANCE TO APPLICABLE LAWS AND/OR ORDINANCES.

DISCLAIMER

BEREX RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. BEREX DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN.

LIFE SUPPORT POLICY

BEREX PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES WITHOUT THE EXPRESS WRITTEN APPROVAL OF BEREX.

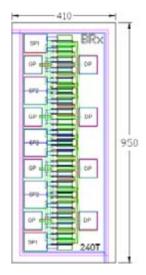
- 1. Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ROHS COMPLIANT

For complete specifications, S-parameters and information on bonding and handling, visited our website; www.berex.com

BCP240T

HIGH EFFICIENCY HETEROJUNCTION POWER FET CHIP (.25μm x 2400μm)


The BeRex BCP240T is a GaAs Power pHEMT with a nominal 0.25 micron gate length and 2400 micron gate width making the product ideally suited for amplifier applications where high-gain and medium power from DC to 26 GHz. The product may be used in either wideband or narrow-band applications. The BCP240T is produced using state of the art metallization with Sl_3N_4 passivation and is screened to assure reliability.

PRODUCT FEATURES

- 34 dBm Typical Output Power
- 10 dB Typical Gain @12 GHz
- 58% PAE Typical @12 GHz
- 0.25 X 2400 μm Recessed Gate

APPLICATIONS

- Commercial
- Military / Hi-Rel.
- Test & Measurement

Chip dimensions: 410 X 950 microns Gate pad(GP): 75 X 75 microns Drain pad(DP): 75 X 75 microns Source pad1(SP1): 95 X 75 microns Source pad2(SP2): 95 X 110 microns Chip thickness: 100 microns

DC CHARACTERISTICS T_a = 25° C

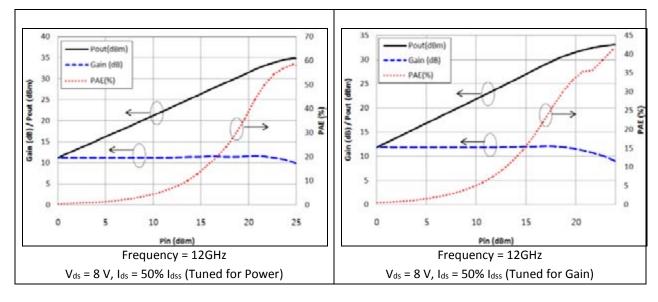
SYMBOL	PARAMETER/TEST CONDITIONS	MIN.	TYPICAL	MAX.	UNIT
l _{dss}	Saturated Drain Current (Vgs = 0V, Vds = 1.2V)	480	720	960	mA
Gm	Transconductance (V _{ds} = 2V, V _{gs} = 50% I _{dss})		960		mS
V_p	Pinch-off Voltage ($I_{ds} = 2.4 \text{ mA}, V_{ds} = 2V$)	-2.5	-1.1	-0.5	V
BV_gd	Drain Breakdown Voltage (Ig = 2.4 mA, source open)		-15	-12	V
BV _{gs}	Source Breakdown Voltage (Ig = 2.4 mA, drain open)		-13		٧
R _{th}	Thermal Resistance (Au-Sn Eutectic Attach)		23		° C/W

ELECTRICAL CHARACTERISTICS (TUNED FOR POWER) Ta = 25° C

SYMBOL	PARAMETER/TEST CONDITIONS	TEST FREQ.	MIN.	TYPICAL	MAX.	UNIT
D .	Output Power @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\%$ I_{dss})	12 GHz	33.5	34.8		dBm
P_{1dB}	Output Power (ω) P _{1dB} ($V_{ds} = \delta V$, $I_{ds} = 50\%$ I_{dss})	18 GHz		33.7		иын
	Coin @ D (V 9V I FOOV I)	12 GHz	9.0	10.2		dB
G _{1dB}	Gain @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\% I_{dss}$)	18 GHz		7.7		ав
PAE	DAT @ D (V 0V 1 500/ 1)	12 GHz		58		0/
	PAE @ P _{1dB} (V _{ds} = 8V, I _{ds} = 50% I _{dss})	18 GHz		42		%

BeRex, Inc. 3350 Scot Blvd. #61-01 Santa Clara, CA 95054 tel. (408) 452-5595

ELECTRICAL CHARACTERISTICS (TUNED FOR GAIN) T_a = 25° C

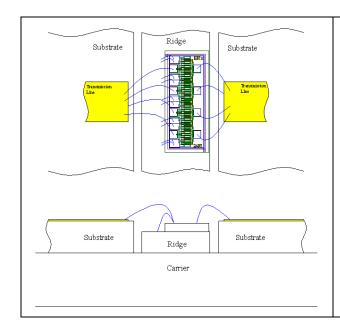

SYMBOL	PARAMETER/TEST CONDITIONS	TEST FREQ.	MIN.	TYPICAL	MAX.	UNIT
P _{1dB}	Output Power @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\%$ I_{dss})	12 GHz	31.0	32.5		dBm
P1dB	Output Power ω PidB (Vds - 8V, ids - 50% idss)	18 GHz		31.2		UDIII
6	C	12 GHz	9.5	11.0		dB
G _{1dB}	Gain @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\% I_{dss}$)	18 GHz		8.7		
PAE	DAT @ D (\/ 0\/ 1 F00/ 1 \)	12 GHz		36		0/
	PAE @ P _{1dB} (V _{ds} = 8V, I _{ds} = 50% I _{dss})	18 GHz		27		%

MAXIMUM RATINGS (T_a = 25° C)

SYMBOLS	PARAMETERS	ABSOLUTE	CONTINUOUS
V _{ds}	Drain-Source Voltage	12 V	8 V
V_{gs}	Gate-Source Voltage	-6 V	-3 V
l _{ds}	Drain Current	l _{dss}	690 mA
Igsf	Forward Gate Current	120 mA	20 mA
Pin	Input Power	31 dBm	@ 3dB Compression
T_{ch}	Channel Temperature	175° C	150° C
T_{stg}	Storage Temperature	-60° C - 150° C	-60° C - 150° C
Pt	Total Power Dissipation	8.4 W	6.9 W

Exceeding any of the above Maximum Ratings will result in reduced MTTF and may cause permanent damage to the device.

P_{IN}_P_{OUT}/Gain, PAE (12 GHz)


S-PARAMETER ($V_{ds} = 8V$, $I_{ds} = 50\% I_{dss}$)

FREQ.	S11	S11	S21	S21	S12	S12	S22	S22
[GHZ]	[MAG]	[ANG.]	[MAG]	[ANG.]	[MAG]	[ANG.]	[MAG]	[ANG.]
1	0.90	-147.20	10.68	101.84	0.024	26.83	0.54	-166.95
2	0.90	-166.80	5.52	87.86	0.026	31.25	0.56	-173.49
3	0.91	-175.23	3.72	79.48	0.028	32.71	0.57	-175.76
4	0.92	179.32	2.80	72.74	0.032	38.68	0.58	-176.62
5	0.92	175.65	2.22	66.25	0.033	42.56	0.59	-177.49
6	0.92	172.96	1.84	60.88	0.037	47.19	0.60	-178.08
7	0.92	170.17	1.54	55.39	0.039	49.21	0.61	-178.49
8	0.93	167.87	1.35	50.23	0.040	52.94	0.62	-178.60
9	0.93	165.98	1.21	46.31	0.045	50.65	0.63	-179.68
10	0.92	163.50	1.09	41.28	0.048	53.68	0.64	179.89
11	0.93	161.40	0.99	36.84	0.052	54.32	0.65	179.02
12	0.93	158.76	0.91	32.10	0.054	53.07	0.66	178.15
13	0.93	154.63	0.85	27.43	0.056	53.42	0.67	177.02
14	0.94	151.80	0.78	22.74	0.058	51.40	0.68	175.57
15	0.93	148.54	0.72	17.87	0.061	50.66	0.69	173.37
16	0.94	143.75	0.67	12.61	0.062	47.94	0.71	171.14
17	0.94	140.71	0.62	7.15	0.063	44.66	0.72	168.48
18	0.94	136.72	0.56	2.33	0.065	40.30	0.74	166.01
19	0.95	132.10	0.51	-3.25	0.064	41.04	0.76	163.20
20	0.96	131.00	0.46	-7.07	0.063	37.85	0.77	161.05
21	0.96	128.78	0.41	-10.67	0.064	35.99	0.78	158.85
22	0.96	126.73	0.37	-13.78	0.063	35.56	0.79	157.27
23	0.95	127.90	0.33	-15.97	0.064	32.67	0.80	154.94
24	0.95	126.96	0.30	-17.87	0.064	27.92	0.82	154.34
25	0.96	127.60	0.27	-19.52	0.061	28.05	0.82	153.29
26	0.95	130.57	0.25	-18.60	0.058	37.30	0.83	153.31

Note: S-parameters include bond wires. Reference planes are at edge of substrates shown on "Wire Bonding Information" figure below.

WIRE BONDING INFORMATION

Follow the wire bonding diagrams recommended by BeRex below to achieve optimum device performance. BeRex recommends thermo-compression wedge bonding. As a general rule, bonding temperature should be kept to a maximum of 280°C for no longer than 2 minutes for all bonding wires. Ultrasonic bonding is not recommended.

Using 1 mil. diameter, Au bonding wires.

- 1. Gate to input transmission line
 - Length and Height : $600 \mu m \times 250 \mu m$
 - Number of wire(s): 4
- 2. Drain to output transmission line
 - Length and Height: 400 μm x 250 μm
 - Number of wire(s): 4
- 3. Source to ground plate
 - Length and Height: 250 μm x 300 μm
 - Number of wire(s): 10

Proper ESD procedures should be followed when handling this device.

DIE ATTACH RECOMMENDATIONS:

BeRex recommends the "Eutectic" die attach using Au-Sn (80%-20%) pre-forms. The die attach station must have accurate temperature control, and the operation should be performed with parts no hotter than 300° C for less than 10 seconds. An inert forming gas (90% N₂-10% H₂) or clean, dry N₂ should be used.

HANDLING PRECAUTIONS:

GaAs FETs are very sensitive to and may be damaged by Electrostatic Discharge (ESD). Therefore, proper ESD precautions must be taken whenever you are handling these devices. It is critically important that all work surfaces, and assembly equipment, as well as the operator be properly grounded when handling these devices to prevent ESD damage.

STORAGE & SHIPPING:

BeRex's standard chip device shipping package consists of an antistatic "Gel-Pak", holding the chips, placed inside a sealed antistatic and moisture barrier bag. This packaging is designed to provide a reasonable measure of protection from both mechanical and ESD damage.

Chip devices should be stored in a clean, dry Nitrogen gas environment at room temperature until they are required for assembly. Only open the shipping package or perform die assembly in a work area with a class 10,000 or better clean room environment to prevent contamination of the exposed devices.

CAUTION:

THIS PRODUCT CONTAINS GALLIUM ARSENIDE (GaAs) WHICH CAN BE HAZARDOUS TO THE HUMAN BODY AND THE ENVIRONMENT. THEREFORE, IT MUST BE HANDLED WITH CARE AND IN ACCORDANCE WITH ALL GOVERNMENTAL AND COMPANY REGULATIONS FOR THE SAFE HANDLING AND DISPOSAL OF HAZARDOUS WASTE. DO NOT BURN, DESTROY, CUT, CRUSH OR CHEMICALLY DISSOLVE THE PRODUCT. DO NOT LICK THE PRODUCT OR IN ANY WAY ALLOW IT TO ENTER THE MOUTH. EXCLUDE THE PRODUCT FROM GENERAL INDUSTRIAL WASTE OR GARBAGE AND DISPOSE OF ONLY IN ACCORDANCE TO APPLICABLE LAWS AND/OR ORDINANCES.

DISCLAIMER

BEREX RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. BEREX DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN.

LIFE SUPPORT POLICY

BEREX PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES WITHOUT THE EXPRESS WRITTEN APPROVAL OF BEREX.

- 1. Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ROHS COMPLIANT

For complete specifications, S-parameters and information on bonding and handling, visited our

website; www.berex.com

BCP020T-70

HIGH EFFICIENCY HETEROJUNCTION POWER FET (0.25μm x 200μm gate)

The BeRex BCP020T-70 is a GaAs Power pHEMT in an industry standard, 70 mil. ceramic, Micro-X, low parasitic, surface-mountable package. It's 0.25μm by 200μm recessed gate architecture provides low noise, high gain and excellent PAE over a broad frequency range of 1000 MHz to 26 GHz.

PRODUCT FEATURES

- 70 mil. surface-mountable ceramic package
- 0.8dB Noise Figure @12 GHz (typical)
- 10.5 dB Associated Gain @12 GHz (typical)
- 21.5 dBm P1dB @12 GHz (typical)
- 13 dB Power Gain @12 GHz (typical)
- RoHS-compliant/lead-free

APPLICATIONS

- Commercial
- Military / Hi-Rel.
- Test & Measurement

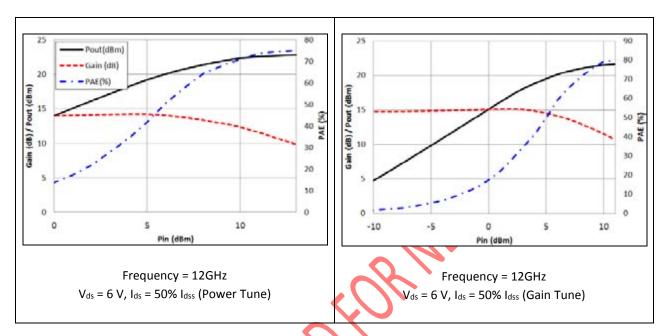
A indicates the lot tracking code

2 indicates this is a BCP020T-70

ELECTRICAL CHARACTERISTIC (TUNED FOR POWER) T_a = 25° C

SYMBOLS	PARAMETER/TEST CONDITIONS	TEST FREQUENCY	MIN.	TYPICAL	Max	UNIT
P _{1dB}	Output Power @ P _{1dB} (V _{ds} = 6V, I _{ds} = 50% I _{dss})	12 GHz	20.0	21.5		dBm
1 TUB	Output Tower (2 1 Tub (vus ov, Tus oo 7 Tuss)	18 GHz	21.0	22.5		авт
G _{1dB}	Gain @ P _{1dB} (V _{ds} = 6V, I _{ds} = 50% I _{dss})	12 GHz	12.0	13.0		dB
Glub	Gail & 1 1dB (V ds = 0V, 1ds = 3076 1dss)	18 GHz	8.5	9.5		uБ
PAE	DAT @ D (V CV L F00/ L)	12 GHz		65		%
PAE	PAE @ P_{1dB} ($V_{ds} = 6V$, $I_{ds} = 50\% I_{dss}$)	18 GHz		60		70
NF	Noise Figure (V _{ds} =2V, I _{ds} =15mA)	12 GHz		0.8		dB
Ga	Associated Gain (V _{ds} =2V, I _{ds} =15mA)	12 GHz		10.5		dB
l _{dss}	Saturated Drain Current ($V_{gs} = 0V$, $V_{ds} = 2.0V$)		40	60	80	mA
Gm	Transconductance (V _{ds} = 3V, Vgs = 50% I _{dss})			80		mS
V_p	Pinch-off Voltage (I _{ds} = 0.2 mA, V _{ds} = 2V)		-2.5	-1.1	-0.5	V
BV_gd	Drain Breakdown Voltage (I _g = 0.2 mA, source		-15		V	
BV_gs	Source Breakdown Voltage (I _g = 0.2 mA, drain		-13		V	
R _{th}	Thermal Resistance		460		° C/W	

ELECTRICAL CHARACTERISTIC (TUNED FOR GAIN) Ta = 25° C

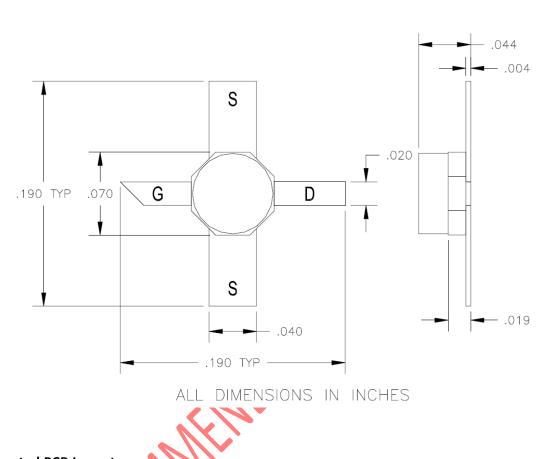

SYMBOLS	PARAMETER/TEST CONDITIONS	TEST FREQUENCY	MIN.	TYPICAL	MAX.	UNIT
P_{1dB}	Output Power @ P_{1dB} ($V_{ds} = 6V$, $I_{ds} = 50\%$ I_{dss})	12 GHz	19.0	20.5		dBm
1 IUB	Output 1 0WC1 @ 1 146 (Vus = 0V, 145 = 3076 1455)	18 GHz	18.0	19.5	GBIII	abili
G _{1dB}	Gain @ P _{1dB} (V _{ds} = 6V, I _{ds} = 50% I _{dss})	12 GHz	12.5	13.5		٩D
G1dB	Gain @ P1dB (Vds - 6V, Ids - 50% Idss)	18 GHz	9.5	10.5	dB	uь
PAE	DAE @ D (V 6V. L E00/ L.)	12 GHz		65		%
PAE	PAE @ P _{1dB} (V _{ds} = 6V, I _{ds} = 50% I _{dss})	18 GHz		45	5	70
NF	Noise Figure (V _{ds} =2V, I _{ds} =15mA)	12 GHz		0.8		dB
Ga	Associated Gain (V _{ds} =2V, I _{ds} =15mA)	12 GHz		10.5		dB
l _{dss}	Saturated Drain Current ($V_{gs} = 0V, V_{ds} = 1.0V$)		50	60.0	80	mA
Gm	Transconductance (V _{ds} = 3V, Vgs = 50% I _{dss})		1	80.0		mS
V_p	Pinch-off Voltage (I _{ds} = 0.2 mA, V _{ds} = 2V)		-2.5	-1.1	-0.5	V
BV_gd	Drain Breakdown Voltage (Ig = 0.2mA, source c	open)		-15		V
BV_gs	Source Breakdown Voltage (Ig = 0.2mA, drain o	pen)		-13		٧
R _{th}	Thermal Resistance			460		° C/W

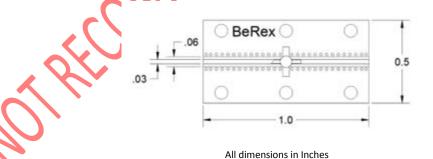
MAXIMUM RATING (T_a = 25° C

SYMBOLS	PARAMETERS	ABSOLUTE	CONTINUOUS
V_{ds}	Drain-Source Voltage	12 V	8 V
V_{gs}	Gate-Source Voltage	-6 V	-3 V
l _{ds}	Drain Current	l _{dss}	l _{dss}
I_{gsf}	Forward Gate Current	11 mA	2 mA
Pin	Input Power	17 dBm	@ 3dB compression
T _{ch}	Channel Temperature	175° C	150° C
T _{stg}	Storage Temperature	-60° C - 150° C	-60° C - 150° C
Pt	Total Power Dissipation	295 mW	245 mW

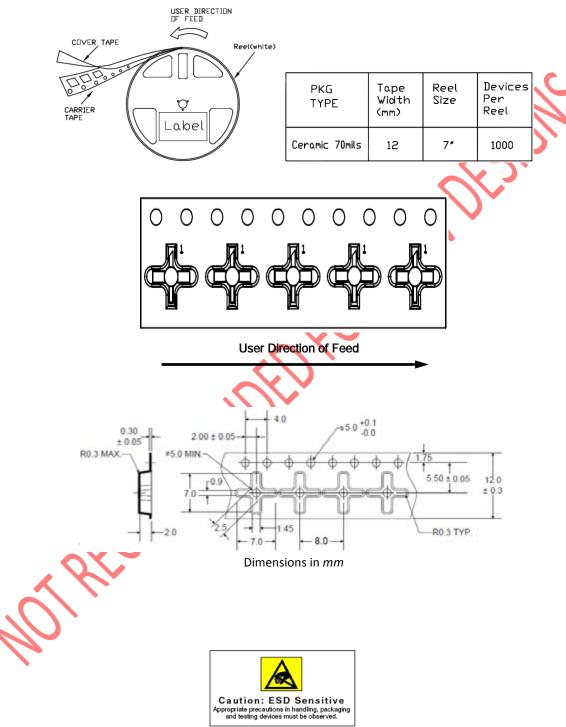
Exceeding any of the above Maximum Ratings will result in reduced MTTF and may cause permanent damage to the device.

P_{IN}_P_{OUT}/Gain, PAE (12 GHz)


P_{IN}_P_{OUT}/Gain, PAE (18 GHz)


S-PARAMETER ($V_{ds} = 6V$, $I_{ds} = 50\% I_{dss}$)

FREQ.	S11	S11	S21	S21	S12	S12	S22	S22
[GHZ]	[MAG]	[ANG.]	[MAG]	[ANG.]	[MAG]	[ANG.]	[MAG]	[ANG.]
1	0.98	-28.41	5.52	153.55	0.014	68.29	0.80	-18.24
2	0.95	-53.08	5.15	130.38	0.026	50.54	0.79	-34.48
3	0.89	-76.01	4.84	108.61	0.037	34.33	0.77	-48.91
4	0.83	-100.67	4.60	86.37	0.045	17.03	0.74	-63.38
5	0.76	-126.87	4.33	63.60	0.050	1.10	0.71	-79.05
6	0.71	-152.22	3.97	41.28	0.054	-13.88	0.69	-95.46
7	0.65	-173.65	3.66	21.60	0.056	-26.31	0.69	-108.86
8	0.61	161.19	3.40	3.23	0.057	-35.93	0.69	-115.38
9	0.57	139.41	3.25	-14.09	0.061	-44.80	0.67	-123.11
10	0.51	116.94	3.28	-31.91	0.067	-53.74	0.62	-133.88
11	0.47	88.66	3.26	-51.90	0.074	-64.62	0.56	-150.58
12	0.45	58.95	3.14	-73.25	0.078	-75.93	0.53	-173.21
13	0.45	30.90	2.91	-93.46	0.081	-86.57	0.54	168.83
14	0.46	5.57	2.71	-111.70	0.086	-97.18	0.57	160.19
15	0.48	-20.84	2.57	-129.85	0.090	-107.29	0.56	155.92
16	0.54	-45.94	2.53	-148.15	0.099	-118.14	0.48	153.32
17	0.62	-69.71	2.53	-167.47	0.111	-132.81	0.34	143.21
18	0.69	-88.94	2.44	170.41	0.116	-148.48	0.24	96.04
19	0.74	-98.80	2.18	150.67	0.112	-162.37	0.27	48.37
20	0.80	-106.42	1.93	131.16	0.111	-176.59	0.29	26.70
21	0.85	-114.60	1.70	111.32	0.106	166.87	0.17	15.60
22	0.88	-137.55	1.53	87.58	0.103	146.60	0.10	-113.33
23	0.89	-176.75	1.38	62.31	0.102	123.84	0.38	-116.73
24	0.91	144.84	1.20	40.58	0.094	104.36	0.55	-102.34
25	0.94	123.43	1.15	22.35	0.096	89.48	0.57	-99.83
26	1.01	124.43	1.22	2.86	0.111	71.91	0.46	-129.11


Package Outline Dimension

Suggested PCB Layout

Tape and Reel Dimensions

Proper ESD procedures should be followed when handling this device.

DISCLAIMER

BEREX RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. BEREX DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN.

LIFE SUPPORT POLICY

BEREX PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES WITHOUT THE EXPRESS WRITTEN APPROVAL OF BEREX.

- 1. Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Proper ESD procedures should be followed when handling this device.

BCP030T-70

HIGH EFFICIENCY HETEROJUNCTION POWER FET (0.25μm x 300μm gate)

The BeRex BCP030T-70 is a GaAs power pHEMT in an industry standard, 70 mil. ceramic, Micro-X, low parasitic, surface-mountable package. It's ideally suited for applications requiring low noise with high gain and excellent PAE over a broad frequency range of 1000 MHz to 26 GHz.

PRODUCT FEATURES

- 70 mil. surface-mountable ceramic package
- 24 dBm P1dB @12 GHz (typical)
- 12 dB Gain @12 GHz (typical)
- 0.25μm X 300μm recessed gate
- RoHS-compliant/lead-free

APPLICATIONS

- Commercial
- Military / Hi-Rel.
- Test & Measurement

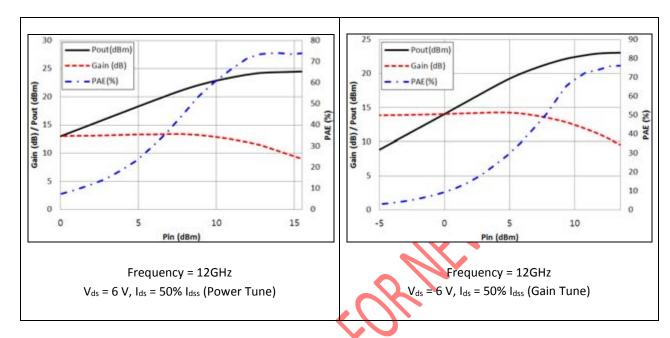
A indicates the lot tracking code

3 indicates this is a BCP030T-70

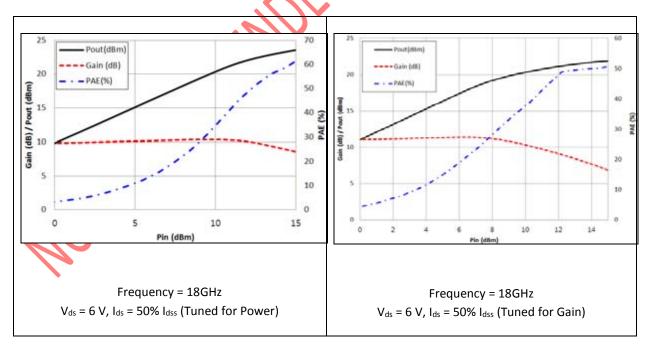
ELECTRICAL CHARACTERISTIC (TUNED FOR POWER) T_a = 25° C

SYMBOLS	PARAMETER/TEST CONDITIONS	TEST FREQUENCY	MIN.	TYPICAL	Max	UNIT	
P_{1dB}	Output Power @ P _{1dB} (V _{ds} = 6V, I _{ds} = 50% I _{dss})	12 GHz	23.0	24.0		dBm	
FidB	Output Fower @ Fide (Vas - 6V, Ids - 50% Idss)	18 GHz	22.5	23.5		ubili	
G _{1dB}	Gain @ P _{1dB} (V _{ds} = 6V, I _{ds} = 50% I _{dss})	12 GHz	10.5	12.0		dB	
G _{1dB}	(Vas – UV, Ids – 30/6 Idss)	18 GHz	7.0	8.5		uв	
PAE	PAE @ P _{1dB} (V _{ds} = 6V, I _{ds} = 50% I _{dss})	12 GHz		70		%	
PAL	PAE @ P1dB (Vds - 6V, Ids - 50% Idss)	18 GHz		60		/0	
ldss	Saturated Drain Current (Vgs = 0V, Vds = 2.0V)			90	120	mA	
G _m	Transconductance (V _{ds} = 3V, Vgs = 50% I _{dss})			120		mS	
Vp	Pinch-off Voltage (I _{ds} = 0.2 mA, V _{ds} = 2V)		-2.5	-1.1	-0.5	V	
BV_gd	Drain Breakdown Voltage (I _g = 0.2 mA, source open)			-15		V	
BV_gs	Source Breakdown Voltage (Ig = 0.2 mA, drain open)			-13		V	
R _{th}	Thermal Resistance			320		° C/W	

ELECTRICAL CHARACTERISTIC (TUNED FOR GAIN) $T_a = 25^{\circ}$ C


SYMBOLS	PARAMETER/TEST CONDITIONS	TEST FREQUENCY	MIN.	TYPICAL	MAX.	UNIT
P _{1dB}	Output Power @ P_{1dB} ($V_{ds} = 6V$, $I_{ds} = 50\%$ I_{dss})	12 GHz	21.0	22.0		dBm
F 1dB	Output rower @ ridB(vds - ov, ids - 50% idss)	18 GHz	19.5	20.5		ubili
C	Cain @ D (V.) = 6V. I. = E0% I.)	12 GHz	11.5	13.0		dB
G _{1dB}	Gain @ P _{1dB} (V _{ds} = 6V, I _{ds} = 50% I _{dss})	18 GHz	8.5	10.0		uБ
PAE	DAE @ Date (V) = 6V 1 = 50% 1	12 GHz		65		%
PAL	E PAE @ P _{1dB} (V _{ds} = 6V, I _{ds} = 50% I _{dss})	18 GHz		40		/0
l _{dss}	Saturated Drain Current $(V_{gs} = 0V, V_{ds} = 1.0V)$		60	90	120	mA
G _m	Transconductance (V _{ds} = 3V, Vgs = 50% I _{dss})			120		mS
Vp	Pinch-off Voltage (I _{ds} = 0.2 mA, V _{ds} = 2V)		-2.5	-1.1	-0.5	V
BV_gd	Drain Breakdown Voltage (Ig = 0.2mA, source open)			-15		V
BV_gs	Source Breakdown Voltage (Ig = 0.2mA, drain open)			-13		V
R _{th}	Thermal Resistance			320		° C/W

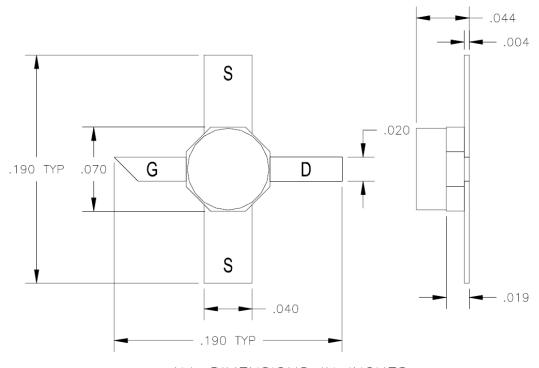
MAXIMUM RATING (T_a = 25° C)


SYMBOLS	PARAMETERS	ABSOLUTE	CONTINUOUS
V_{ds}	Drain-Source Voltage	12 V	8 V
V_{gs}	Gate-Source Voltage	-6 V	-3 V
I_{ds}	Drain Current	I_{dss}	I_{dss}
I_{gsf}	Forward Gate Current	18 mA	3 mA
P _{in}	Input Power	22 dBm	@ 3dB compression
T_{ch}	Channel Temperature	175° C	150° C
T_{stg}	Storage Temperature	-60° C - 150° C	-60° C - 150° C
Pt	Total Power Dissipation	420 mW	350 mW

Exceeding any of the above Maximum Ratings will result in reduced MTTF and may cause permanent damage to the device.

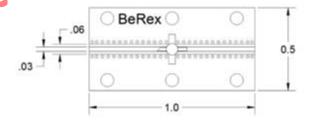
P_{IN}_P_{OUT}/Gain, PAE (12 GHz)

P_{IN} Pout/Gain, PAE (18 GHz)

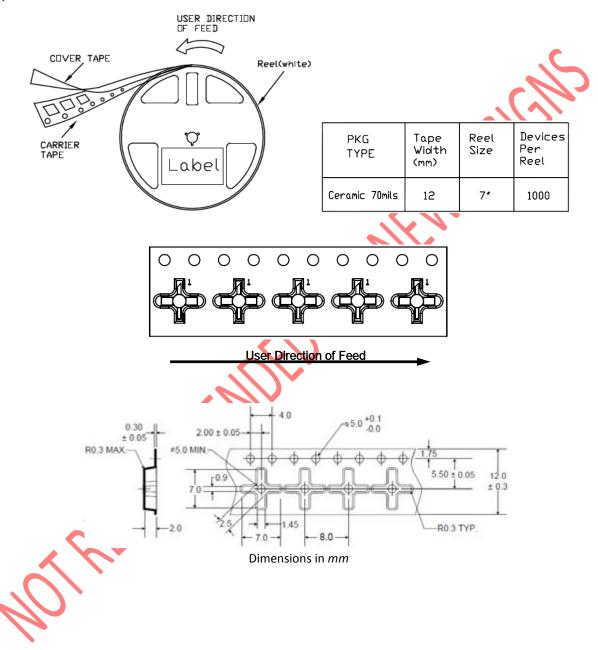


S-PARAMETER ($V_{ds} = 6V$, $I_{ds} = 50\% I_{dss}$)

FREQ.	S11	S11	S21	S21	S12	S12	S22	S22
[GHZ]	[MAG]	[ANG.]	[MAG]	[ANG.]	[MAG]	[ANG.]	[MAG]	[ANG.]
1	0.97	-36.44	7.62	148.34	0.019	63.96	0.71	-21.45
2	0.90	-67.46	6.84	121.35	0.034	45.01	0.68	-39.50
3	0.82	-95.78	6.15	96.63	0.045	27.50	0.65	-54.83
4	0.74	-125.41	5.56	72.34	0.054	10.39	0.60	-69.56
5	0.68	-154.85	4.97	48.89	0.059	-4.58	0.56	-85.10
6	0.63	178.26	4.38	26.69	0.062	-18.02	0.54	-101.36
7	0.58	154.89	3.96	6.77	0.065	-29.24	0.54	-114.44
8	0.55	127.75	3.61	-12.25	0.068	-38.65	0.54	-120.05
9	0.53	104.20	3.39	-30.48	0.073	-48.20	0.52	-127.27
10	0.51	78.00	3.32	-49.64	0.081	-58.64	0.45	-138.50
11	0.52	48.90	3.19	-70.35	0.089	-70.65	0.37	-157.17
12	0.54	22.14	2.97	-91.64	0.095	-83.55	0.33	176.26
13	0.57	-1.26	2.73	-111.58	0.100	-95.31	0.34	157.26
14	0.58	-24.01	2.53	-130.78	0.107	-107.75	0.36	150.45
15	0.62	-47.46	2.38	-150.22	0.112	-121.53	0.32	148.96
16	0.69	-70.66	2.28	-170.04	0.120	-135.53	0.20	152.45
17	0.76	-93.74	2.18	169.98	0.129	-151.58	0.03	167.92
18	0.82	-111.56	2.00	149.41	0.130	-167.71	0.13	-23.66
19	0.84	-119.05	1.78	131.52	0.123	177.97	0.21	-33.71
20	0.89	-123.28	1.57	112.15	0.119	163.47	0.17	-62.80
21	0.92	-128.87	1.33	91.48	0.110	145.63	0.19	-143.94
22	0.92	-151.02	1.10	69.08	0.099	126.72	0.41	-163.08
23	0.91	169.76	0.94	47.99	0.092	107.48	0.59	-145.80
24	0.93	131.71	0.82	29.94	0.086	91.39	0.66	-126.41
25	0.98	109.36	0.81	12.15	0.091	76.80	0.62	-125.11
26	1.03	107.39	0.84	-10.05	0.104	56.98	0.50	-162.86
MC.	RE							


NOT RECOMMENDED FOR NEW DESIGNS

Package Outline Dimension


ALL DIMENSIONS IN INCHES

Suggested PCB layout

All dimensions in Inches

Tape and Reel Dimensions

DISCLAIMER

BEREX RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. BEREX DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN.

LIFE SUPPORT POLICY

BEREX PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES WITHOUT THE EXPRESS WRITTEN APPROVAL OF BEREX.

- Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labeling, can be reasonably expected to result in significant injury to the
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Proper ESD procedures should be followed when handling this device.

BCP060T-70

HIGH EFFICIENCY HETEROJUNCTION POWER FET (0.25μm x 600μm gate)

The BeRex BCP060T-70 is a GaAs power pHEMT in an industry standard, 70 mil. ceramic, Micro-X, low parasitic, surface-mountable package. It's 0.25μm by 600 μm recessed gate architecture provides high gain, high power and excellent PAE over a broad frequency range of 1000 MHz to 26 GHz.

PRODUCT FEATURES

- 70 mil. surface-mountable ceramic package
- 26.5 dBm P1dB @12 GHz (typical)
- 10.5dB Gain @ 12 GHz (typical)
- 70% PAE @12 GHz (typical)
- RoHS-compliant/lead-free

APPLICATIONS

- Commercial
- Military / Hi-Rel.
- Test & Measurement

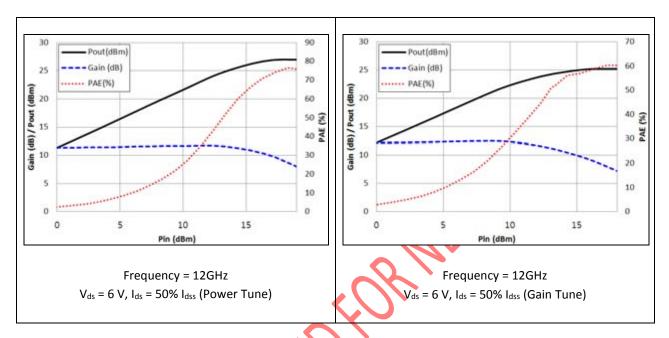
A indicates the lot tracking code

6 indicates this is a BCP060T-70

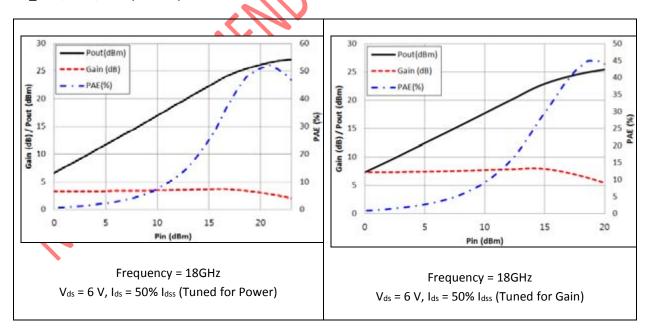
ELECTRICAL CHARACTERISTIC (TUNED FOR POWER) Ta = 25° C

SYMBOLS	PARAMETER/TEST CONDITIONS	TEST FREQUENCY	MIN.	TYPICAL	Max	UNIT	
P _{1dB}	Output Power @ P_{1dB} ($V_{ds} = 6V$, $I_{ds} = 50\%$ I_{dss})	12 GHz	25.5	26.5		dBm	
1 108	Catpat 1500ci (2 1 105 (Vas = 0 V) las = 3070 lass)	18 GHz	25.0	26.0		ubili	
G _{1dB}	Gain @ P _{1dB} (V _{ds} = 6V, I _{ds} = 50% I _{dss})	12 GHz	9.0	10.5		dB	
G1dB	Gall to Flag (Vas - 0V, Ids - 30% Idss)	18 GHz	4.0	5.5		uв	
PAE	PAE @ P _{1dB} (V _{ds} = 6V, I _{ds} = 50% I _{dss})	12 GHz		70		%	
PAE	P1dB (Vds - 6V, Ids - 50% Idss)	18 GHz		50		70	
l _{dss}	Saturated Drain Current (V _{gs} = 0V, V _{ds} = 2.0V)			180	240	mA	
Gm	Transconductance ($V_{ds} = 3V$, $Vgs = 50\% I_{dss}$)			240		mS	
V_p	Pinch-off Voltage ($I_{ds} = 0.2 \text{ mA}$, $V_{ds} = 2V$)		-2.5	-1.1	-0.5	V	
BV_gd	Drain Breakdown Voltage (Ig = 0.2 mA, source open)			-15		V	
BV_gs	Source Breakdown Voltage (Ig = 0.2 mA, drain open)			-13		V	
R _{th}	Thermal Resistance	·		175		° C/W	

ELECTRICAL CHARACTERISTIC (TUNED FOR GAIN) Ta = 25° C


SYMBOLS	PARAMETER/TEST CONDITIONS	TEST FREQUENCY	MIN.	TYPICAL	MAX.	UNIT
P _{1dB}	Output Power @ P_{1dB} ($V_{ds} = 6V$, $I_{ds} = 50\%$ I_{dss})	12 GHz	23.5	24.5	1	dBm
P1dB	Output rower @ ridB(vds - ov, ids - 50% idss)	18 GHz	24.0	25.0		ubili
G _{1dB}	Gain @ P _{1dB} (V _{ds} = 6V, I _{ds} = 50% I _{dss})	12 GHz	9.5	11.0		dB
GidB	Gaill @ Flas (Vas = 0V, las = 30% lass)	18 GHz	4.0	6.5		uв
PAE	PAE @ P _{1dB} (V _{ds} = 6V, I _{ds} = 50% I _{dss})	12 GHz		50		%
PAE	PAE @ P1dB (Vds - 6V, Ids - 50% Idss)	18 GHz		45		70
l _{dss}	Saturated Drain Current $(V_{gs} = 0V, V_{ds} = 1.0V)$		120	180	240	mA
G _m	Transconductance (V _{ds} = 3V, Vgs = 50% I _{dss})			240		mS
V_p	Pinch-off Voltage (I _{ds} = 0.2 mA, V _{ds} = 2V)		-2.5	-1.1	-0.5	V
BV_gd	Drain Breakdown Voltage (Ig = 0.2mA, source open)			-15		V
BV_gs	Source Breakdown Voltage (Ig = 0.2mA, drain open)			-13		V
R _{th}	Thermal Resistance			175		° C/W

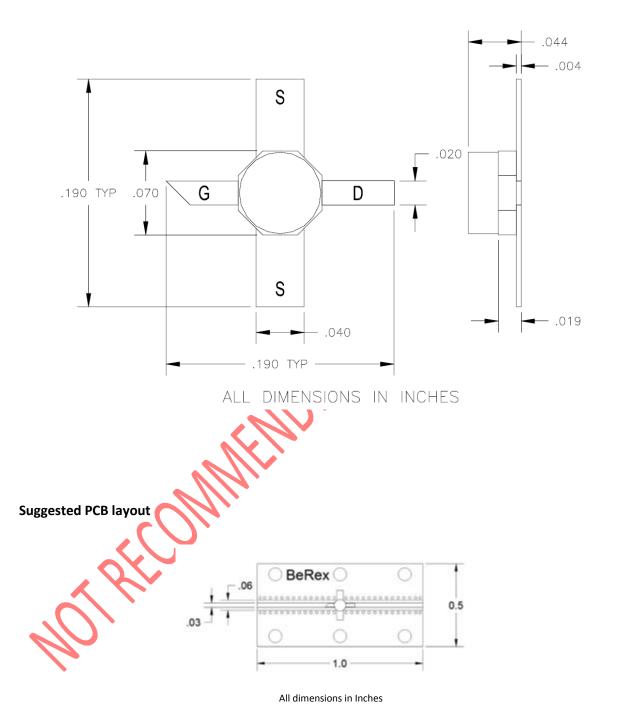
MAXIMUM RATING (T_a = 25° C)


SYMBOLS	PARAMETERS	ABSOLUTE	CONTINUOUS
V_{ds}	Drain-Source Voltage	12 V	8 V
V_{gs}	Gate-Source Voltage	-6 V	-3 V
l _{ds}	Drain Current	l _{dss}	l _{dss}
Igsf	Forward Gate Current	30 mA	10 mA
P _{in}	Input Power	25 dBm	@ 3dB compression
T_ch	Channel Temperature	175° C	150° C
T_{stg}	Storage Temperature	-60° C - 150° C	-60° C - 150° C
Pt	Total Power Dissipation	770 mW	640 mW

Exceeding any of the above Maximum Ratings will result in reduced MTTF and may cause permanent damage to the device.

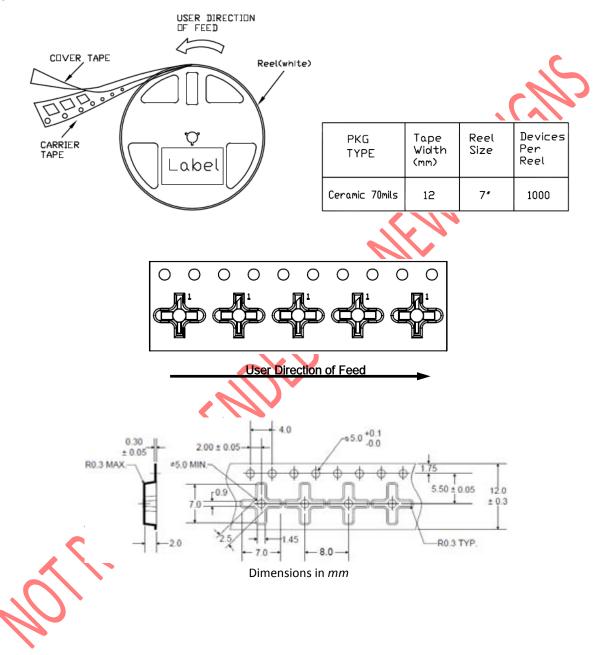
P_{IN}_P_{OUT}/Gain, PAE (12 GHz)

P_{IN}_P_{OUT}/Gain, PAE (18 GHz)



J RECONNENDED FOR WEINDED FOR WEINDE FOR W

S-PARAMETER ($V_{ds} = 6V$, $I_{ds} = 50\% I_{dss}$)


FREQ.	S11	S11	S21	S21	S12	S12	S22	S22
[GHZ]	[MAG]	[ANG.]	[MAG]	[ANG.]	[MAG]	[ANG.]	[MAG]	[ANG.]
1	0.90	-60.76	11.78	133.20	0.029	54.41	0.48	-36.53
2	0.78	-105.90	9.06	99.27	0.045	33.13	0.41	-59.74
3	0.68	-142.83	7.14	71.51	0.055	17.59	0.35	-76.29
4	0.62	-176.75	5.78	46.88	0.062	4.08	0.30	-91.49
5	0.61	154.54	4.79	24.72	0.067	-7.08	0.27	-108.97
6	0.59	130.07	4.06	4.18	0.073	-17.33	0.27	-126.88
7	0.57	106.73	3.58	-15.67	0.081	-28.01	0.27	-139.27
8	0.58	81.95	3.20	-35.12	0.089	-38.65	0.26	-141.79
9	0.59	60.08	2.94	-54.62	0.099	-50.49	0.21	-147.95
10	0.63	36.00	2.73	-75.51	0.111	-64.55	0.11	-169.68
11	0.68	12.41	2.47	-96.75	0.119	-79.29	0.07	98.82
12	0.72	-8.35	2.21	-117.31	0.125	-94.00	0.13	58.07
13	0.75	-27.14	2.01	-137.10	0.130	-108.47	0.14	43.21
14	0.76	-47.14	1.85	-157.75	0.140	-123.66	0.10	14.57
15	0.80	-68.43	1.68	-179 .2 6	0.144	-141.90	0.15	-49.75
16	0.86	-90.92	1.49	159.58	0.143	-159.60	0.31	-68.95
17	0.90	-112.82	1.31	141.19	0.141	-174.96	0.45	-70.56
18	0.93	-127.84	1.16	124.88	0.138	171.07	0.53	-74.01
19	0.93	-132.78	1.04	109.39	0.128	156.10	0.53	-88.99
20	0.96	-134.05	0.91	90.24	0.121	141.47	0.51	-126.25
21	0.96	-137.60	0.72	69.33	0.104	122.78	0.60	-169.56
22	0.94	-158.04	0.55	50.76	0.086	107.35	0.75	-179.70
23	0.92	164.01	0.46	35.25	0.080	93.18	0.83	-162.41
24	0.94	127.13	0.41	21.26	0.076	80.62	0.83	-143.57
25	0.99	105.00	0.42	4.82	0.084	65.84	0.76	-146.28
26	1.03	102.73	0.44	-19.39	0.092	45.71	0.66	170.63

Package Outline Dimension

Specifications are subject to change without notice. ©BeRex 2015 Rev. 1.3

Tape and Reel Dimensions

DISCLAIMER

BEREX RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. BEREX DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN.

LIFE SUPPORT POLICY

BEREX PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES WITHOUT THE EXPRESS WRITTEN APPROVAL OF BEREX.

- 1. Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Proper ESD procedures should be followed when handling this device.

BCP080T-70

HIGH EFFICIENCY HETEROJUNCTION POWER FET (0.25μm x 800μm gate)

The BeRex BCP080T-70 is a GaAs power pHEMT in an industry standard, 70 mil. ceramic, Micro-X, low parasitic, surface-mountable package. It's 0.25μm by 800 μm recessed gate architecture provides high gain, high power and excellent PAE over a broad frequency range of 1000 MHz to 26 GHz.

PRODUCT FEATURES

- 70 mil. surface-mount ceramic package
- 27.5dBm P1dB @12 GHz (typical)
- 9.5dB Gain @12 GHz (typical)
- 65% PAE @12 GHz (typical)
- RoHS-compliant/lead-free

APPLICATIONS

- Commercial
- Military / Hi-Rel.
- Test & Measurement

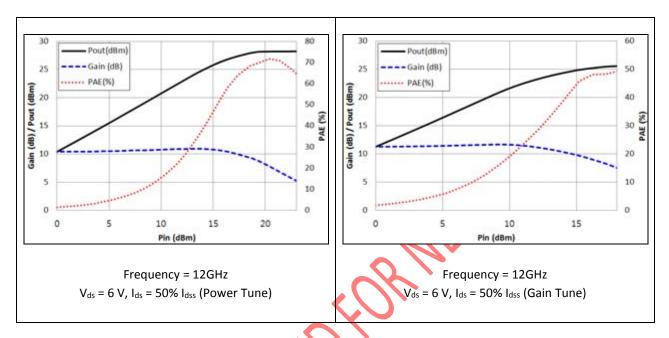
A indicates the lot tracking code

8 indicates this is a BCP080T-70

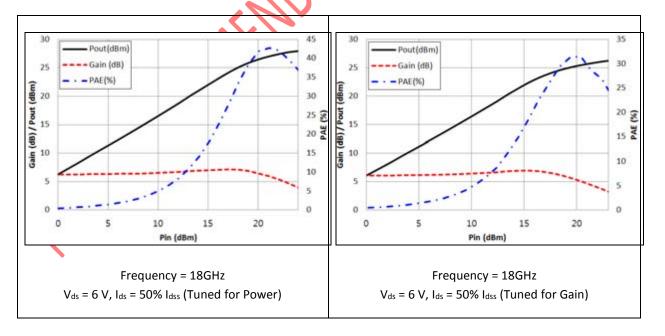
ELECTRICAL CHARACTERISTIC (TUNED FOR POWER) T_a = 25° C

SYMBOLS	PARAMETER/TEST CONDITIONS	TEST FREQUENCY	MIN.	TYPICAL	Max	UNIT
P_{1dB}	Output Power @ P_{1dB} ($V_{ds} = 6V$, $I_{ds} = 50\%$ I_{dss})	12 GHz	26.0	27.5		dBm
1 108	Output 1 0wer & 1 10b (vas = 0 v , 10s = 30 % 10ss)	18 GHz	26.0	27.5		dbiii
G _{1dB}	Gain @ P _{1dB} (V _{ds} = 6V, I _{ds} = 50% I _{dss})	12 GHz	9.0	9.5		dB
G _{1dB}	Gall & Flag (Vas - 0V, Ids - 30% Idss)	18 GHz	4.0	5.5		uв
PAE	PAE @ P _{1dB} (V _{ds} = 6V, I _{ds} = 50% I _{dss})	12 GHz		65		%
PAE	P1dB (Vds - 0V, Ids - 50% Idss)	18 GHz		50		70
l _{dss}	Saturated Drain Current (V _{gs} = 0V, V _{ds} = 2.0V)			240	320	mA
Gm	Transconductance (V _{ds} = 3V, Vgs = 50% I _{dss})			320		mS
Vp	Pinch-off Voltage (I _{ds} = 0.2 mA, V _{ds} = 2V)		-2.5	-1.1	-0.5	V
BV_gd	Drain Breakdown Voltage (Ig = 0.2 mA, source open)			-15		V
BV_gs	Source Breakdown Voltage (Ig = 0.2 mA, drain open)			-13		V
R _{th}	Thermal Resistance			135		° C/W

ELECTRICAL CHARACTERISTIC (TUNED FOR GAIN) Ta = 25° C

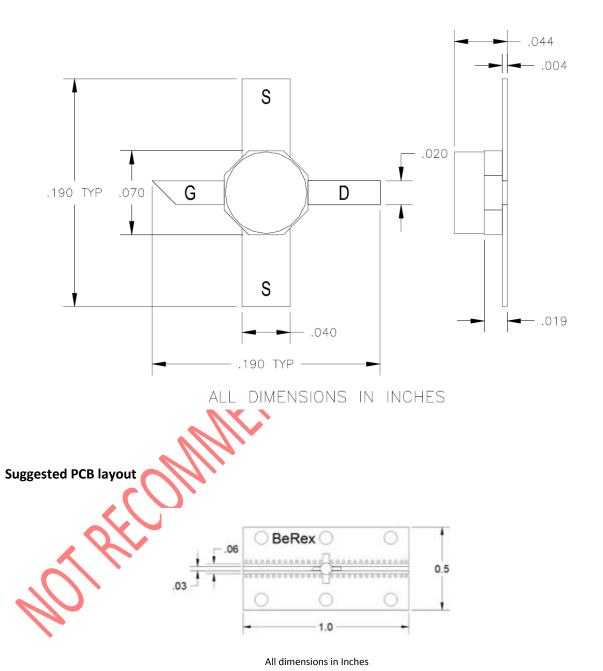

SYMBOLS	PARAMETER/TEST CONDITIONS	FREQUENCY			MAX.	UNIT
P _{1dB}	Output Power @ P_{1dB} ($V_{ds} = 6V$, $I_{ds} = 50\%$ I_{dss})	12 GHz	23.5	24.5	/	dBm
P1dB	Output Fower @ Flas (Vas = 0V, las = 30% lass)	18 GHz	24.0	25.0		Jubili
G _{1dB}	Gain @ P _{1dB} (V _{ds} = 6V, I _{ds} = 50% I _{dss})	12 GHz	9.0	10.5		dB
Glas	Gaill @ Flos (Vas = OV, las = 50% lass)	18 GHz	4.0	5.5		uь
PAE	PAE @ P _{1dB} (V _{ds} = 6V, I _{ds} = 50% I _{dss})	12 GHz		50		%
PAL	PAL @ PidB (Vds - OV, ids - 30% idss)	18 GHz		45		/0
l _{dss}	Saturated Drain Current ($V_{gs} = 0V$, $V_{ds} = 1.0V$)		160	240	320	mA
G _m	Transconductance ($V_{ds} = 3V$, $Vgs = 50\% I_{dss}$)			320		mS
Vp	Pinch-off Voltage ($I_{ds} = 0.2 \text{ mA}$, $V_{ds} = 2V$)		-2.5	-1.1	-0.5	V
BV_gd	Drain Breakdown Voltage (Ig = 0.2mA, source open)			-15		V
BV_gs	Source Breakdown Voltage (I _g = 0.2mA, drain open)			-13		V
R _{th}	Thermal Resistance	Ul		135		° C/W

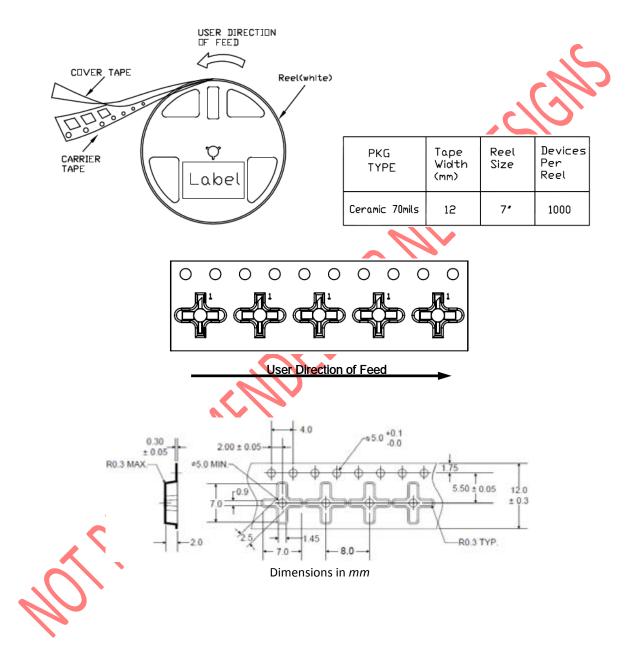
MAXIMUM RATING $(T_a = 25^{\circ} C)$


SYMBOLS	PARAMETERS	ABSOLUTE	CONTINUOUS
V_{ds}	Drain-Source Voltage	12 V	8 V
V_{gs}	Gate-Source Voltage	-6 V	-3 V
l _{ds}	Drain Current	l _{dss}	l _{dss}
I_{gsf}	Forward Gate Current	40 mA	7 mA
P _{in}	Input Power	27 dBm	@ 3dB compression
T_{ch}	Channel Temperature	175° C	150° C
T_{stg}	Storage Temperature	-60° C - 150° C	-60° C - 150° C
Pt	Total Power Dissipation	1.0 W	835 mW

Exceeding any of the above Maximum Ratings will result in reduced MTTF and may cause permanent damage to the device.

P_{IN}_P_{OUT}/Gain, PAE (12 GHz)


P_{IN}_P_{OUT}/Gain, PAE (18 GHz)


S-PARAMETER ($V_{ds} = 6V$, $I_{ds} = 50\% I_{dss}$)

FREQ.	S11	S11	S21	S21	S12	S12	S22	S22
[GHZ]	[MAG]	[ANG.]	[MAG]	[ANG.]	[MAG]	[ANG.]	[MAG]	[ANG.]
1	0.86	-75.90	12.72	124.40	0.031	49.04	0.37	-48.85
2	0.73	-125.12	9.06	89.52	0.045	29.42	0.29	-74.05
3	0.66	-161.95	6.79	62.24	0.055	16.03	0.23	-90.96
4	0.63	166.59	5.34	38.46	0.063	4.50	0.18	-108.26
5	0.63	141.16	4.37	17.17	0.070	-5.18	0.16	-130.79
6	0.62	119.15	3.69	-2.76	0.078	-15.42	0.17	-150.96
7	0.61	97.38	3.25	-22.60	0.088	-26.11	0.17	-163.48
8	0.62	74.35	2.90	-42.48	0.099	-38.30	0.14	-165.32
9	0.64	53.76	2.65	-62.68	0.111	-51.60	0.07	179.06
10	0.68	30.82	2.41	-84.30	0.122	-66.91	0.08	51.04
11	0.73	8.48	2.14	-105.66	0.129	-82.82	0.19	27.25
12	0.77	-11.33	1.90	-126.13	0.134	-98.23	0.27	15.44
13	0.80	-29.36	1.72	-146.13	0.140	-113.49	0.28	-1.04
14	0.81	-49.08	1.58	-167.77	0.148	-129.95	0.28	-29.71
15	0.85	-70.34	1.40	169.89	0.150	-149.97	0.37	-60.91
16	0.89	-92.81	1.20	149.00	0.143	-167.89	0.51	-75.62
17	0.91	-114.04	1.02	132.15	0.136	178.31	0.62	-78.27
18	0.94	-128.03	0.90	117.66	0.132	164.97	0.67	-83.00
19	0.93	-132.41	0.81	102.69	0.123	149.84	0.66	-99.29
20	0.96	-133.36	0.71	83.23	0.114	134.62	0.65	-136.54
21	0.96	-136.80	0.55	62.32	0.095	115.93	0.73	-176.39
22	0.93	-156.75	0.41	45.29	0.077	101.75	0.84	175.30
23	0.91	165.99	0.35	31.62	0.071	89.54	0.90	-166.91
24	0.93	129.64	0.32	18.97	0.070	78.11	0.89	-148.46
25	0.98	108.05	0.34	2.86	0.078	63.42	0.82	-152.69
26	1.02	106.49	0.35	-22.11	0.082	43.20	0.72	162.75

Package Outline Dimension

Tape and Reel Dimensions

DISCLAIMER

BEREX RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. BEREX DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN.

LIFE SUPPORT POLICY

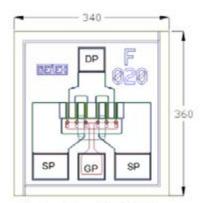
BEREX PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES WITHOUT THE EXPRESS WRITTEN APPROVAL OF BEREX.

- 1. Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Proper ESD procedures should be followed when handling this device.

BCF020T

HIGH EFFICIENCY HETEROJUNCTION POWER FET CHIP (.3 μm x 200 μm)


The BeRex BCF020T is a GaAs Power MESFET whose nominal 0.3 micron gate length and 200 micron gate width make the product ideally suited to applications requiring high OIP3 linearity and low phase noise while providing high-gain and medium power from DC to 26.5 GHz. This product is well suited for either wideband or narrow-band applications. The BCF020T is produced using state of the art metallization and each wafer is screened to insure compliance with specifications. These chips utilize SI_3N_4 passivation for increased reliability.

Product Features

- 20 dBm Typical Output Power
- 13.5 dB Typical Power Gain @ 12 GHz
- Low Phase Noise
- 0.3 X 200 Micron Recessed Gate

Applications

- Commercial
- Military / Hi-Rel
- Test & Measurement

Chip dimensions: 340 X 360 microns Gate pad(GP): 60 X 55 microns Drain pad(DP): 60 X 50 microns Source pad(SP): 90 X 65 microns Chip thickness: 100 microns

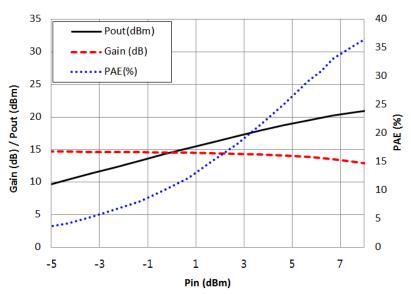
DC CHARACTERISTIC (T_a = 25° C)

	PARAMETER/TEST CONDITIONS	MINIMUM	TYPICAL	MAXIMUM	MINIMUM
l _{dss}	Saturated Drain Current (Vgs = 0V, Vds = 2V)	40	60	80	mA
Gm	Transconductance ($V_{ds} = 3V$, $V_{gs} = 50\% I_{dss}$)	25	35		mS
Vp	Pinch-off Voltage ($I_{ds} = 300 \mu A$, $V_{ds} = 3V$)	-3.5	-2.0	-0.5	V
BV_gd	Drain Breakdown Voltage (Ig = 0.2 mA, source open)		-15	-11	V
BV_gs	Source Breakdown Voltage (I _g = 0.2 mA, drain open)		-10	-7	V
Rth	Thermal Resistance (Au-Sn Eutectic Attach)		160		° C/W

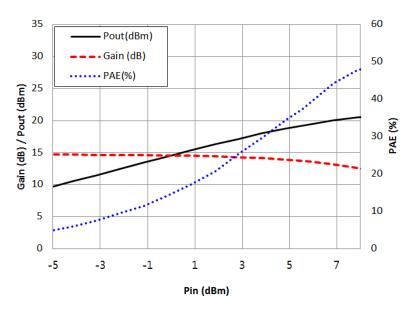
ELECTRICAL CHARACTERISTIC (V_{ds} = 8V, T_a = 25°C)

	PARAMETER/TEST CONDITIONS	TEST FREQUENCY	MINIMUM	TYPICAL	MAXIMUM	UNIT
P _{1dB}	Output Power @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\%$ I_{dss})	12 GHZ	18.0	20.0		dBm
r 1dB	Output Fower @ Fids (Vds - 8V, Ids - 50% Idss)	18 GHz	18.2	20.2		dbiii
G _{1dB}	Gain @ P _{1dB} (V _{ds} = 8V, I _{ds} = 50% I _{dss})	12 GHZ	11.5	13.5		dB
G1dB	Gaill @ P1dB (Vds - 8V, Ids - 50% Idss)	18 GHz	9.2	12.1		иь
PAE	DAE @ Days (V/ . = 8V/ I . = 50% I .)	12 GHZ		31		%
PAE	PAE @ P _{1dB} (V _{ds} = 8V, I _{ds} = 50% I _{dss})	18 GHz		34		70
NF	Noise figure (V _{ds} = 2V, I _{ds} = 10 mA)	12 GHz		1.1		dB
Ga	Associated Gain ((V _{ds} = 2V, I _{ds} = 10 mA)	12 GHz		11		dB

ELECTRICAL CHARACTERISTIC (V_{ds} = 6V, T_a = 25° C)

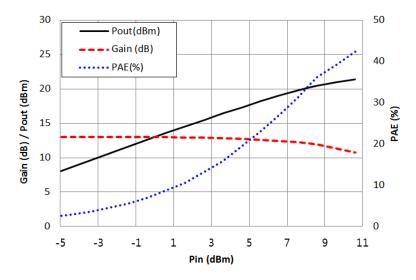

	PARAMETER/TEST CONDITIONS	TEST FREQUENCY	MINIMUM	TYPICAL	MAXIMUM	UNIT
P _{1dB}	Output Power @ P_{1dB} ($V_{ds} = 6V$, $I_{ds} = 50\%$ I_{dss})	12 GHZ 18 GHz	17.2 17.6	19.2 19.6		dBm
G _{1dB}	Gain @ P _{1dB} (V _{ds} = 6V, I _{ds} = 50% I _{dss})	12 GHZ 18 GHz	11.2 9.8	13.2 11.8		dB
PAE	PAE @ P _{1dB} (V _{ds} = 6V, I _{ds} = 50% I _{dss})	12 GHZ 18 GHz		37 42		%
NF	Noise figure (V _{ds} = 2V, I _{ds} = 10 mA)	12 GHz		1.1		dB
Ga	Associated Gain (($V_{ds} = 2V$, $I_{ds} = 10$ mA)	12 GHz		11		dB

MAXIMUM RATINGS (T_a = 25° C)

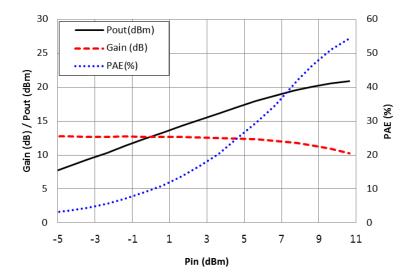

	PARAMETERS	ABSOLUTE	CONTINUOUS
V_{ds}	Drain-Source Voltage	12 V	8 V
V_{gs}	Gate-Source Voltage	-8 V	-4V
l _{ds}	Drain Current	l _{dss}	l _{dss}
Igsf	Forward Gate Current	5 mA	0.8 mA
Pin	Input Power	15 dBm	@ 3dB compression
T_ch	Channel Temperature	175° C	150° C
T _{stg}	Storage Temperature	-60° C - 150° C	-60° C - 150° C
Pt	Total Power Dissipation	0.9 W	0.8 W

Exceeding any of the above Maximum Ratings will result in reduced MTTF and may cause permanent damage to the device.

P_{in}_P_{out}/Gain, PAE (12 GHz)

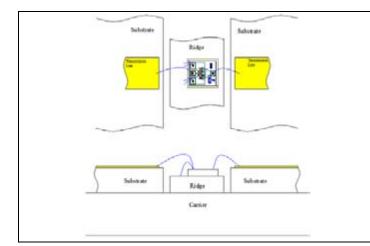


Freq. = 12 GHz, V_{ds} = 8V, I_{ds} = 50% I_{dss}



Freq. = 12 GHz, V_{ds} = 6V, I_{ds} = 50% I_{dss}

P_{in}_P_{out}/Gain, PAE (18 GHz)



Freq. = 18 GHz, V_{ds} = 8V, I_{ds} = 50% I_{dss}

Freq. = 18 GHz, V_{ds} = 6V, I_{ds} = 50% I_{dss}

Wire Bonding Options

- · Gold Bonding Wire information
- 1. Gate to input transmission line
 - Length and Height: 400 um and 250 um
 - Number of wires: 1
- 2. Drain to output transmission line
 - Length and Height: 350 um and 250 um
 - Number of wires: 1
- 3. Source to ground plate
 - Length and Height: 200 um x 250 um
 - Number of wires: 4

Note: The diameter of bonding wires: 1 mil

Proper ESD procedures should be followed when handling this device.

DIE ATTACH RECOMMENDATIONS:

BeRex recommends the "Eutectic" die attach using Au-Sn (80%-20%) pre-forms. The die attach station must have accurate temperature control, and the operation should be performed with parts no hotter than 300° C for less than 10 seconds. An inert forming gas (90% N₂-10% H₂) or clean, dry N₂ should be used.

HANDLING PRECAUTIONS:

GaAs FETs are very sensitive to and may be damaged by Electrostatic Discharge (ESD). Therefore, proper ESD precautions must be taken whenever you are handling these devices. It is critically important that all work surfaces, and assembly equipment, as well as the operator be properly grounded when handling these devices to prevent ESD damage.

STORAGE & SHIPPING:

BeRex's standard chip device shipping package consists of an antistatic "Gel-Pak", holding the chips, placed inside a sealed antistatic and moisture barrier bag. This packaging is designed to provide a reasonable measure of protection from both mechanical and ESD damage perform die assembly in a work area with a class 10,000 or better clean room environment to prevent contamination of the exposed devices.

Chip devices should be stored in a clean, dry Nitrogen gas environment at room temperature until they are required for assembly. Only open the shipping package or perform die assembly in a work area with a class 10,000 or better clean room environment to prevent contamination of the exposed devices.

CAUTION:

THIS PRODUCT CONTAINS GALLIUM ARSENIDE (GaAs) WHICH CAN BE HAZARDOUS TO THE HUMAN BODY AND THE ENVIRONMENT. THEREFORE, IT MUST BE HANDLED WITH CARE AND IN ACCORDANCE WITH ALL GOVERNMENTAL AND COMPANY REGULATIONS FOR THE SAFE HANDLING AND DISPOSAL OF HAZARDOUS WASTE. DO NOT BURN, DESTROY, CUT, CRUSH OR CHEMICALLY DISSOLVE THE PRODUCT. DO NOT LICK THE PRODUCT OR IN ANY WAY ALLOW IT TO ENTER THE MOUTH. EXCLUDE THE PRODUCT FROM GENERAL INDUSTRIAL WASTE OR GARBAGE AND DISPOSE OF ONLY IN ACCORDANCE TO APPLICABLE LAWS AND/OR ORDINANCES.

DISCLAIMER

BEREX RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. BEREX DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN.

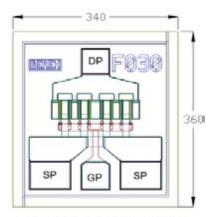
LIFE SUPPORT POLICY

BEREX PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES WITHOUT THE EXPRESS WRITTEN APPROVAL OF BEREX.

- 1. Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BCF030T

HIGH EFFICIENCY HETEROJUNCTION POWER FET CHIP (.3 μm x 300 μm)


The BeRex BCF030T is a GaAs Power MESFET whose nominal 0.3 micron gate length and 300 micron gate width make the product ideally suited to applications requiring high OIP3 linearity and low phase noise while providing high-gain and medium power from DC to 26.5 GHz frequency range. This product is well suited for either wideband or narrow-band applications. The BCF030T is produced using state of the art metallization and devices from each wafer are screened to insure reliability. These chips utilize SI_3N_4 passivation for increased reliability.

Product Features

- 21.5 dBm Typical Output Power
- 13.5 dB Typical Power Gain @ 12 GHz
- Low Phase Noise
- 0.3 X 300 Micron Recessed Gate

Applications

- Commercial
- Military / Hi-Rel
- Test & Measurement

Chip dimensions: 340 X 360 microns Gate pad(GP): 60 X 55 microns Drain pad(DP): 60 X 50 microns Source pad(SP): 90 X 65 microns Chip thickness: 100 microns

DC CHARACTERISTIC (T_a = 25° C)

	PARAMETER/TEST CONDITIONS	MINIMU M	TYPICAL	MAXIMU M	UNIT
l _{dss}	Saturated Drain Current (Vgs = 0V, Vds = 2V)	60	90	120	mA
Gm	Transconductance ($V_{ds} = 3V$, $V_{gs} = 50\% I_{dss}$)	35	50		mS
Vp	Pinch-off Voltage ($I_{ds} = 300 \mu A$, $V_{ds} = 3V$)	-3.5	-2.0	-0.5	٧
BV_gd	Drain Breakdown Voltage (I _g = 0.2 mA, source open)		-15	-11	V
BV _{gs}	Source Breakdown Voltage (Ig = 0.2 mA, drain open)		-10	-7	V
R _{th}	Thermal Resistance (Au-Sn Eutectic Attach)		120		° C/W

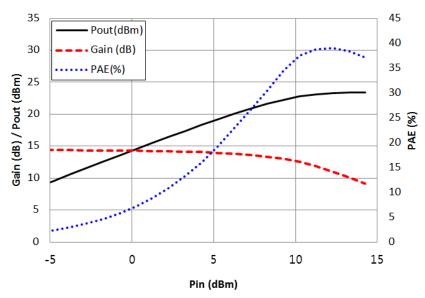
BeRex, Inc. 3350 Scott Blvd. #61-01 Santa Clara, CA 95054 tel. (408) 452-5595

Rev. 1.3

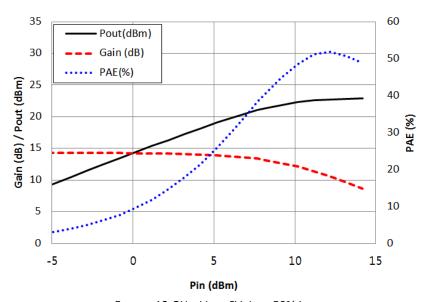
ELECTRICAL CHARACTERISTIC (V_{ds} = 8V, T_a = 25°C)

	PARAMETER/TEST CONDITIONS	TEST FREQUENCY	MINIMUM	TYPICAL	MAXIMUM	UNIT
P _{1dB}	Output Power @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\% I_{dss}$)	12 GHZ 18 GHz	19.5 19.7	21.5 21.7		dBm
G _{1dB}	Gain @ P _{1dB} (V _{ds} = 8V, I _{ds} = 50% I _{dss})	12 GHZ 18 GHz	11.5 9.5	13.5 11.5		dB
PAE	PAE @ P _{1dB} (V _{ds} = 8V, I _{ds} = 50% I _{dss})	12 GHZ 18 GHz		30.0 32.5		%
NF	Noise figure (V _{ds} = 2V, I _{ds} = 10 mA)	12 GHz		1.45		dB
Ga	Associated Gain ((V _{ds} = 2V, I _{ds} = 10 mA)	12 GHz		11		dB

ELECTRICAL CHARACTERISTIC (V_{ds} = 6V, T_a = 25° C)


	PARAMETER/TEST CONDITIONS	TEST FREQUENCY	MINIMUM	TYPICAL	MAXIMU M	UNIT
P _{1dB}	Output Power @ P_{1dB} ($V_{ds} = 6V$, $I_{ds} = 50\%$ I_{dss})	12 GHZ 18 GHz	19 19.5	21.0 21.5		dBm
G _{1dB}	Gain @ P _{1dB} (V _{ds} = 6V, I _{ds} = 50% I _{dss})	12 GHZ 18 GHz	11.2 8.9	13.2 10.9		dB
PAE	PAE @ P _{1dB} (V _{ds} = 6V, I _{ds} = 50% I _{dss})	12 GHZ 18 GHz		38 40		%
NF	Noise figure (V _{ds} = 2V, I _{ds} = 10 mA)	12 GHz		1.45		dB
Ga	Associated Gain ((V _{ds} = 2V, I _{ds} = 10 mA)	12 GHz		11		dB

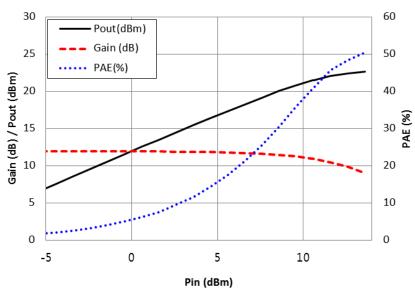
MAXIMUM RATINGS (T_a = 25° C)


	PARAMETERS	ABSOLUTE	CONTINUOUS
V_{ds}	Drain-Source Voltage	12 V	8 V
V_{gs}	Gate-Source Voltage	-8 V	-4V
I_{ds}	Drain Current	l _{dss}	I _{dss}
Igsf	Forward Gate Current	7.5 mA	1.2 mA
Pin	Input Power	16 dBm	@ 3dB compression
T_ch	Channel Temperature	175° C	150° C
T_{stg}	Storage Temperature	-60° C - 150° C	-60° C - 150° C
Pt	Total Power Dissipation	1.2 W	1.0 W

Exceeding any of the above Maximum Ratings will result in reduced MTTF and may cause permanent damage to the device

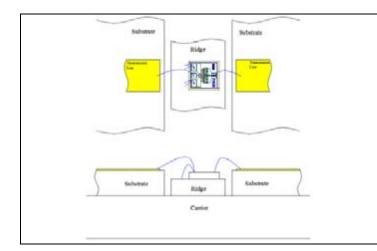
P_{in}_P_{out}/Gain, PAE (12 GHz)

Freq. = 12 GHz, V_{ds} = 8 V, I_{ds} = 50% I_{dss}


Freq. = 12 GHz, V_{ds} = 6V, I_{ds} = 50% I_{dss}

Rev. 1.3

P_{in}_P_{out}/Gain, PAE (18 GHz)



Freq. = 18 GHz, V_{ds} = 8 V, I_{ds} = 50% I_{dss}

Freq. = 18 GHz, V_{ds} = 6 V, I_{ds} = 50% I_{dss}

Wire Bonding Options

- · Gold Bonding Wire information
- 1. Gate to input transmission line
 - Length and Height: 400 um and 250 um
 - Number of wires: 1
- 2. Drain to output transmission line
 - Length and Height: 350 um and 250 um
 - Number of wires: 1
- 3. Source to ground plate
 - Length and Height: 200 um x 250 um
 - Number of wires: 4

Note: The diameter of bonding wires: 1 mil

Proper ESD procedures should be followed when handling this device.

DIE ATTACH RECOMMENDATIONS:

BeRex recommends the "Eutectic" die attach using Au-Sn (80%-20%) pre-forms. The die attach station must have accurate temperature control, and the operation should be performed with parts no hotter than 300° C for less than 10 seconds. An inert forming gas (90% N₂-10% H₂) or clean, dry N₂ should be used.

HANDLING PRECAUTIONS:

GaAs FETs are very sensitive to and may be damaged by Electrostatic Discharge (ESD). Therefore, proper ESD precautions must be taken whenever you are handling these devices. It is critically important that all work surfaces, and assembly equipment, as well as the operator be properly grounded when handling these devices to prevent ESD damage.

STORAGE & SHIPPING:

BeRex's standard chip device shipping package consists of an antistatic "Gel-Pak", holding the chips, placed inside a sealed antistatic and moisture barrier bag. This packaging is designed to provide a reasonable measure of protection from both mechanical and ESD damage.

Chip devices should be stored in a clean, dry Nitrogen gas environment at room temperature until they are required for assembly. Only open the shipping package or perform die assembly in a work area with a class 10,000 or better clean room environment to prevent contamination of the exposed devices.

CAUTION:

THIS PRODUCT CONTAINS GALLIUM ARSENIDE (GaAs) WHICH CAN BE HAZARDOUS TO THE HUMAN BODY AND THE ENVIRONMENT. THEREFORE, IT MUST BE HANDLED WITH CARE AND IN ACCORDANCE WITH ALL GOVERNMENTAL AND COMPANY REGULATIONS FOR THE SAFE HANDLING AND DISPOSAL OF HAZARDOUS WASTE. DO NOT BURN, DESTROY, CUT, CRUSH OR CHEMICALLY DISSOLVE THE PRODUCT. DO NOT LICK THE PRODUCT OR IN ANY WAY ALLOW IT TO ENTER THE MOUTH. EXCLUDE THE PRODUCT FROM GENERAL INDUSTRIAL WASTE OR GARBAGE AND DISPOSE OF ONLY IN ACCORDANCE TO APPLICABLE LAWS AND/OR ORDINANCES.

DISCLAIMER

BEREX RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. BEREX DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN.

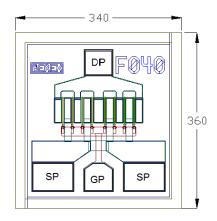
LIFE SUPPORT POLICY

BEREX PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES WITHOUT THE EXPRESS WRITTEN APPROVAL OF BEREX.

- 1. Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BCF040T

HIGH EFFICIENCY HETEROJUNCTION POWER FET CHIP (.3 μm x 400 μm)


The BeRex BCF040T is a GaAs Power MESFET whose nominal 0.3 micron gate length and 400 micron gate width make the product ideally suited to applications requiring high OIP3 linearity and low phase noise while providing high-gain and medium power from DC to 26.5 GHz. This product is well suited for either wideband or narrow-band applications. The BCF040T is produced using state of the art metallization and devices from each wafer are screened to insure reliability. These chips utilize SI_3N_4 passivation for increased reliability.

Product Features

- 23.0 dBm Typical Output Power
- 13 dB Typical Power Gain @ 12 GHz
- Low Phase Noise
- 0.3 X 400 Micron Recessed Gate

Applications

- Commercial
- Military / Hi-Rel
- Test & Measurement

Chip dimensions: 340 X 360 microns Gate pad(GP): 60 X 55 microns Drain pad(DP): 60 X 50 microns Source pad(SP): 90 X 65 microns Chip thickness: 100 microns

DC CHARACTERISTIC (T_a = 25° C)

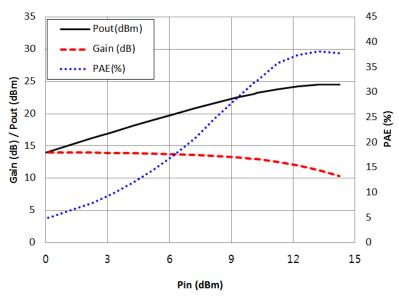
	PARAMETER/TEST CONDITIONS	MINIMUM	TYPICAL	MAXIMUM	UNIT
l _{dss}	Saturated Drain Current (Vgs = 0V, Vds = 2V)	80	120	160	mA
Gm	Transconductance (V _{ds} = 3V, V _{gs} = 50% I _{dss})	50	70		mS
Vp	Pinch-off Voltage ($I_{ds} = 300 \mu A$, $V_{ds} = 3V$)	-3.5	-2.0	-0.5	V
BV_gd	Drain Breakdown Voltage (I _g = 0.2 mA, source open)	-15	-11	V	
BV _{gs}	Source Breakdown Voltage (Ig = 0.2 mA, drain open)	-10	-7	V	
R _{th}	Thermal Resistance (Au-Sn Eutectic Attach)		100		° C/W

BeRex, Inc. 3350 Scott Blvd. #61-01 Santa Clara, CA 95054 tel. (408) 452-5595

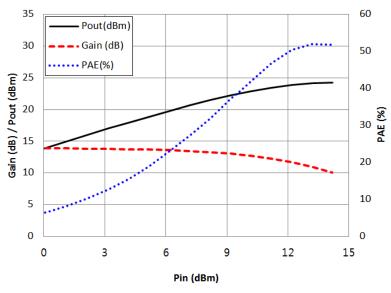
ELECTRICAL CHARACTERISTIC (V_{ds} = 8V, T_a = 25°C)

	PARAMETER/TEST CONDITIONS	TEST FREQUENCY	MINIMUM	TYPICAL	MAXIMUM	UNIT
P _{1dB}	Output Power @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\%$ I_{dss})	12 GHZ 18 GHz	21.0 20.5	23.0 22.5		dBm
G _{1dB}	Gain @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\% I_{dss}$)	12 GHZ 18 GHz	11.0 8.4	13.0 10.4		dB
PAE	PAE @ P _{1dB} (V _{ds} = 8V, I _{ds} = 50% I _{dss})	12 GHZ 18 GHz		32 30		%
NF	Noise figure (V _{ds} = 2V, I _{ds} = 10 mA)	12 GHz		1.65		dB
Ga	Associated Gain (V _{ds} = 2V, I _{ds} = 10 mA)	12 GHz		10		dB

ELECTRICAL CHARACTERISTIC (V_{ds} = 6V, T_a = 25°C)

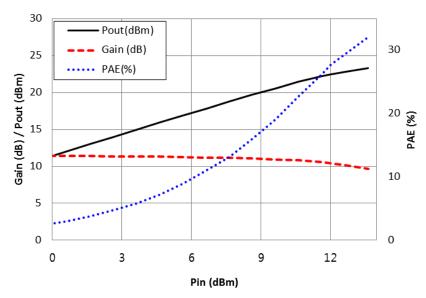

	PARAMETER/TEST CONDITIONS	TEST FREQUENCY	MINIMUM	TYPICAL	MAXIMUM	UNIT
P _{1dB}	Output Power @ P_{1dB} ($V_{ds} = 6V$, $I_{ds} = 50\%$ I_{dss})	12 GHZ 18 GHz	20.5 202	22.5 22.2		dBm
G _{1dB}	Gain @ P _{1dB} (V _{ds} = 6V, I _{ds} = 50% I _{dss})	12 GHZ 18 GHz	10.8 8.3	12.8 10.3		dB
PAE	PAE @ P _{1dB} (V _{ds} = 6V, I _{ds} = 50% I _{dss})	12 GHZ 18 GHz		39 37		%
NF	Noise figure (V _{ds} = 2V, I _{ds} = 10 mA)	12 GHz		1.65		dB
Ga	Associated Gain (V _{ds} = 2V, I _{ds} = 10 mA)	12 GHz		10		dB

MAXIMUM RATINGS (Ta = 25°C)

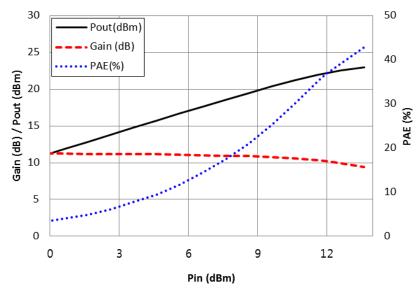

	PARAMETERS	ABSOLUTE	CONTINUOUS
V_{ds}	Drain-Source Voltage	12 V	8 V
V_{gs}	Gate-Source Voltage	-8 V	-4V
I_{ds}	Drain Current	l _{dss}	I _{dss}
I_{gsf}	Forward Gate Current	10 mA	1.6 mA
P _{in}	Input Power	18 dBm	@ 3dB compression
T_{ch}	Channel Temperature	175° C	150° C
T_{stg}	Storage Temperature	-60° C - 150° C	-60° C - 150° C
Pt	Total Power Dissipation	1.4 W	1.2 W

Exceeding any of the above Maximum Ratings will result in reduced MTTF and may cause permanent damage to the device

P_{in}_P_{out}/Gain, PAE (12 GHz)

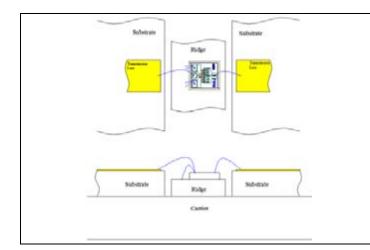


Freq. = 12 GHz, V_{ds} = 8 V, I_{ds} = 50% I_{dss}



Freq. = 12 GHz, V_{ds} = 6 V, I_{ds} = 50% I_{dss}

P_{in}_P_{out}/Gain, PAE (18 GHz)



Freq. = 18 GHz, V_{ds} = 8V, I_{ds} = 50% I_{dss}

Freq. = 18 GHz, V_{ds} = 6V, I_{ds} = 50% I_{dss}

Wire Bonding Options

- · Gold Bonding Wire information
- 1. Gate to input transmission line
 - Length and Height: 400 um and 250 um
 - Number of wires: 1
- 2. Drain to output transmission line
 - Length and Height: 350 um and 250 um
 - Number of wires: 1
- 3. Source to ground plate
 - Length and Height: 200 um x 250 um
 - Number of wires: 4

Note: The diameter of bonding wires: 1 mil

Proper ESD procedures should be followed when handling this device.

DIE ATTACH RECOMMENDATIONS:

BeRex recommends the "Eutectic" die attach using Au-Sn (80%-20%) pre-forms. The die attach station must have accurate temperature control, and the operation should be performed with parts no hotter than 300°C for less than 10 seconds. An inert forming gas (90% N₂-10% H₂) or clean, dry N₂ should be used.

HANDLING PRECAUTIONS:

GaAs FETs are very sensitive to and may be damaged by Electrostatic Discharge (ESD). Therefore, proper ESD precautions must be taken whenever you are handling these devices. It is critically important that all work surfaces, and assembly equipment, as well as the operator be properly grounded when handling these devices to prevent ESD damage.

STORAGE & SHIPPING:

BeRex's standard chip device shipping package consists of an antistatic "Gel-Pak", holding the chips, placed inside a sealed antistatic and moisture barrier bag. This packaging is designed to provide a reasonable measure of protection from both mechanical and ESD damage.

Chip devices should be stored in a clean, dry Nitrogen gas environment at room temperature until they are required for assembly. Only open the shipping package or perform die assembly in a work area with a class 10,000 or better clean room environment to prevent contamination of the exposed devices.

CAUTION:

THIS PRODUCT CONTAINS GALLIUM ARSENIDE (GaAs) WHICH CAN BE HAZARDOUS TO THE HUMAN BODY AND THE ENVIRONMENT. THEREFORE, IT MUST BE HANDLED WITH CARE AND IN ACCORDANCE WITH ALL GOVERNMENTAL AND COMPANY REGULATIONS FOR THE SAFE HANDLING AND DISPOSAL OF HAZARDOUS WASTE. DO NOT BURN, DESTROY, CUT, CRUSH OR CHEMICALLY DISSOLVE THE PRODUCT. DO NOT LICK THE PRODUCT OR IN ANY WAY ALLOW IT TO ENTER THE MOUTH. EXCLUDE THE PRODUCT FROM GENERAL INDUSTRIAL WASTE OR GARBAGE AND DISPOSE OF ONLY IN ACCORDANCE TO APPLICABLE LAWS AND/OR ORDINANCES.

DISCLAIMER

BEREX RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. BEREX DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN.

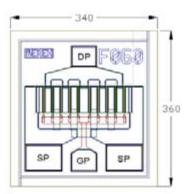
LIFE SUPPORT POLICY

BEREX PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES WITHOUT THE EXPRESS WRITTEN APPROVAL OF BEREX.

- 1. Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BCF060T

HIGH EFFICIENCY HETEROJUNCTION POWER FET CHIP (.3 μm x 600 μm)


The BeRex BCF060T is a GaAs Power MESFET whose nominal 0.3 micron gate length and 600 micron gate width make the product ideally suited to applications requiring high OIP3 linearity and low phase noise while providing high-gain and medium power from DC to 26.5 GHz. This product is well suited for either wideband or narrow-band applications. The BCF060T is produced using state of the art metallization and devices from each wafer are screened to insure reliability. These chips utilize SI_3N_4 passivation for increased reliability.

Product Features

- 25.0 dBm Typical Output Power
- 12.5 dB Typical Power Gain @ 12 GHz
- Low Phase Noise
- 0.3 X 600 Micron Recessed Gate

Applications

- Commercial
- Military / Hi-Rel
- Test & Measurement

Chip dimensions: 340 X 360 microns Gate pad(GP): 60 X 55 microns Drain pad(DP): 60 X 50 microns Source pad(SP): 90 X 65 microns Chip thickness: 100 microns

DC CHARACTERISTIC (T_a = 25° C)

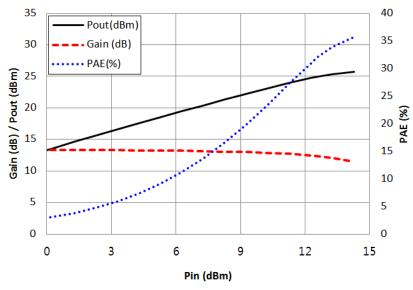
	PARAMETER/TEST CONDITIONS	MINIMUM	TYPICAL	MAXIMUM	UNIT
l _{dss}	Saturated Drain Current (Vgs = 0V, Vds = 2V)	100	170	240	mA
Gm	Transconductance (V _{ds} = 3V, V _{gs} = 50% I _{dss})	70	100		mS
Vp	Pinch-off Voltage ($I_{ds} = 300 \mu A, V_{ds} = 3V$)	-3.5	-2.0		V
BV_gd	Drain Breakdown Voltage (Ig = 0.2 mA, source open)		-15	-11	V
BV _{gs}	Source Breakdown Voltage (Ig = 0.2 mA, drain open)		-10	-7	V
R _{th}	Thermal Resistance (Au-Sn Eutectic Attach)		75		° C/W

BeRex, Inc. 3350 Scott Blvd. #61-01 Santa Clara, CA 95054 tel. (408) 452-5595

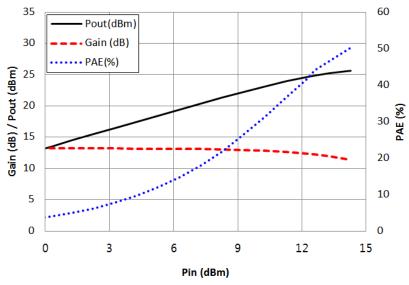
ELECTRICAL CHARACTERISTIC (V_{ds} = 8V, T_a = 25° C)

	PARAMETER/TEST CONDITIONS	TEST FREQUENCY	MINIMUM	TYPICAL	MAXIMUM	UNIT
P _{1dB}	Output Power @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\%$ I_{dss})	12 GHZ	23.0	25.0		dBm
. 105	. 145 - Catpart : C : 146 (*43 - C*) 143 - C* (*433)	18 GHz	22.6	24.6		0.2
G _{1dB}	Gain @ P _{1dB} (V _{ds} = 8V, I _{ds} = 50% I _{dss})	12 GHZ	10.5	12.5		dB
Glas	Gaill @ F1dB (Vds - 8V, lds - 30% ldss)	18 GHz	8.0	10.0		uв
PAE	PAE @ P _{1dB} (V _{ds} = 8V, I _{ds} = 50% I _{dss})	12 GHZ		32		%
FAL	FAL @ F1dB (Vds - 8V, 1ds - 30% 1dss)	18 GHz		31		/0
NF	Noise figure (V _{ds} = 2V, I _{ds} = 10 mA)	12 GHz		1.85		dB
Ga	Associated Gain ((V _{ds} = 2V, I _{ds} = 10 mA)	12 GHz		9.5		dB

ELECTRICAL CHARACTERISTIC (V_{ds} = 6V, T_a = 25°C)

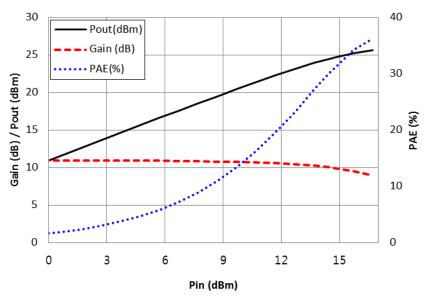

	PARAMETER/TEST CONDITIONS	TEST FREQUENCY	MINIMUM	TYPICAL	MAXIMUM	UNIT
P _{1dB}	Output Power @ P_{1dB} ($V_{ds} = 6V$, $I_{ds} = 50\%$ I_{dss})	12 GHZ	22.5	24.5		dBm
F 10B	Output Power @ Plas (Vas = 0V, las = 30% lass)	18 GHz	22.3	24.3		ubili
G _{1dB}	Gain @ B (V 6V. L 50% L.)	12 GHZ	10.2	12.2		dB
G _{1dB}	Gain @ P_{1dB} ($V_{ds} = 6V$, $I_{ds} = 50\% I_{dss}$)	18 GHz	7.8	9.8		иь
PAE	DAT @ D . (V CV 1 F00/ I.)	12 GHZ		37		%
PAE	PAE @ P _{1dB} (V _{ds} = 6V, I _{ds} = 50% I _{dss})	18 GHz		39		70
NF	Noise figure (V _{ds} = 2V, I _{ds} = 10 mA)	12 GHz		1.85		dB
Ga	Associated Gain ((V _{ds} = 2V, I _{ds} = 10 mA)	12 GHz		9.5		dB

MAXIMUM RATINGS ($T_a = 25^{\circ}$ C)

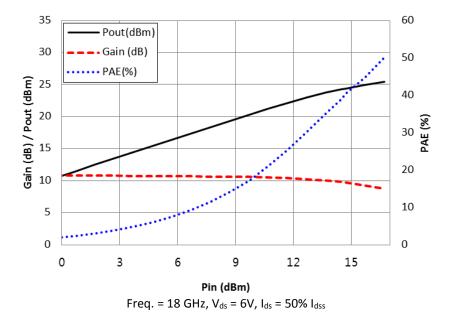

	PARAMETERS	ABSOLUTE	CONTINUOUS
V_{ds}	Drain-Source Voltage	12 V	8 V
V_{gs}	Gate-Source Voltage	-8 V	-4V
l _{ds}	Drain Current	l _{dss}	l _{dss}
I_{gsf}	Forward Gate Current	15 mA	2.4 mA
Pin	Input Power	21 dBm	@ 3dB compression
T_{ch}	Channel Temperature	175° C	150° C
T_{stg}	Storage Temperature	-60° C - 150° C	-60° C - 150° C
Pt	Total Power Dissipation	1.9 W	1.6 W

Exceeding any of the above Maximum Ratings will result in reduced MTTF and may cause permanent damage to the device

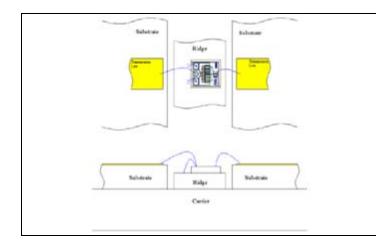
P_{in}_P_{out}/Gain, PAE (12 GHz)



Freq. = 12 GHz, V_{ds} = 8 V, I_{ds} = 50% Idss



Freq. = 12 GHz, V_{ds} = 6 V, I_{ds} = 50% I_{dss}


Pin_Pout/Gain, PAE (18 GHz)

Freq. = 18 GHz, V_{ds} = 8V, I_{ds} = 50% I_{dss}

Wire Bonding Options

- · Gold Bonding Wire information
- 1. Gate to input transmission line
 - Length and Height: 400 um and 250 um
 - Number of wires: 1
- 2. Drain to output transmission line
 - Length and Height: 350 um and 250 um
- Number of wires: 1
 3. Source to ground plate
 - Length and Height: 200 um x 250 um
 - Number of wires: 4

Note: The diameter of bonding wires: 1 mil

Proper ESD procedures should be followed when handling this device.

Rev. 1.3

DIE ATTACH RECOMMENDATIONS:

BeRex recommends the "Eutectic" die attach using Au-Sn (80%-20%) pre-forms. The die attach station must have accurate temperature control, and the operation should be performed with parts no hotter than 300°C for less than 10 seconds. An inert forming gas (90% N₂-10% H₂) or clean, dry N₂ should be used.

HANDLING PRECAUTIONS:

GaAs FETs are very sensitive to and may be damaged by Electrostatic Discharge (ESD). Therefore, proper ESD precautions must be taken whenever you are handling these devices. It is critically important that all work surfaces, and assembly equipment, as well as the operator be properly grounded when handling these devices to prevent ESD damage.

STORAGE & SHIPPING:

BeRex's standard chip device shipping package consists of an antistatic "Gel-Pak", holding the chips, placed inside a sealed antistatic and moisture barrier bag. This packaging is designed to provide a reasonable measure of protection from both mechanical and ESD damage.

Chip devices should be stored in a clean, dry Nitrogen gas environment at room temperature until they are required for assembly. Only open the shipping package or perform die assembly in a work area with a class 10,000 or better clean room environment to prevent contamination of the exposed devices.

CAUTION:

THIS PRODUCT CONTAINS GALLIUM ARSENIDE (GaAs) WHICH CAN BE HAZARDOUS TO THE HUMAN BODY AND THE ENVIRONMENT. THEREFORE, IT MUST BE HANDLED WITH CARE AND IN ACCORDANCE WITH ALL GOVERNMENTAL AND COMPANY REGULATIONS FOR THE SAFE HANDLING AND DISPOSAL OF HAZARDOUS WASTE. DO NOT BURN, DESTROY, CUT, CRUSH OR CHEMICALLY DISSOLVE THE PRODUCT. DO NOT LICK THE PRODUCT OR IN ANY WAY ALLOW IT TO ENTER THE MOUTH. EXCLUDE THE PRODUCT FROM GENERAL INDUSTRIAL WASTE OR GARBAGE AND DISPOSE OF ONLY IN ACCORDANCE TO APPLICABLE LAWS AND/OR ORDINANCES.

DISCLAIMER

BEREX RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. BEREX DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN.

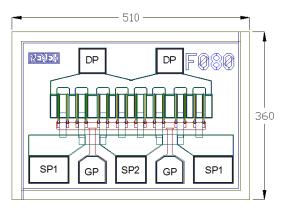
LIFE SUPPORT POLICY

BEREX PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES WITHOUT THE EXPRESS WRITTEN APPROVAL OF BEREX.

- Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body,
 or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions
 for use provided in labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BCF080T

HIGH EFFICIENCY HETEROJUNCTION POWER FET CHIP (.3 μm x 800 μm)


The BeRex BCF080T is a GaAs Power MESFET whose nominal 0.3 micron gate length and 800 micron gate width make the product ideally suited to applications requiring high OIP3 linearity and low phase noise while providing high-gain and medium power from DC to 26.5 GHz. This product is well suited for either wideband or narrow-band applications. The BCF080T is produced using state of the art metallization and devices from each wafer are screened to insure reliability. These chips utilize SI_3N_4 passivation for increased reliability.

Product Features

- 26.0 dBm Typical Output Power
- 11.0 dB Typical Power Gain @ 12 GHz
- Low Phase Noise
- 0.3 X 800 Micron Recessed Gate

Applications

- Commercial
- Military / Hi-Rel
- Test & Measurement

Chip dimensions : 510 X 360 microns Gate pad(GP) : 60 X 55 microns Drain pad(DP) : 60 X 50 microns Source pad1(SP1) : 90 X 65 microns Source pad2(SP2) : 70 X 65 microns Chip thickness : 100 microns

DC CHARACTERISTIC (T_a = 25° C)

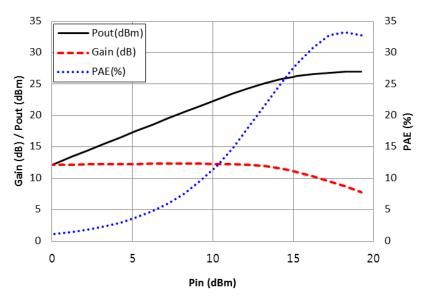
	PARAMETER/TEST CONDITIONS	MINIMU M	TYPICAL	MAXIMU M	UNIT
l _{dss}	Saturated Drain Current (Vgs = 0V, Vds = 2V)	160	240	320	mA
Gm	Transconductance (V _{ds} = 3V, V _{gs} = 50% I _{dss})	100	130		mS
Vp	Pinch-off Voltage (I_{ds} = 800 μ A, V_{ds} = 3V)	-3.5	-2.0		V
BV_gd	Drain Breakdown Voltage (Ig = 0.8 mA, source open)		-15	-11	V
BV _{gs}	Source Breakdown Voltage (Ig = 0.8 mA, drain open)		-10	-7	V
Rth	Thermal Resistance (Au-Sn Eutectic Attach)		61		° C/W

BeRex, Inc. 3350 Scott Blvd. #61-01 Santa Clara, CA 95054 tel. (408) 452-5595

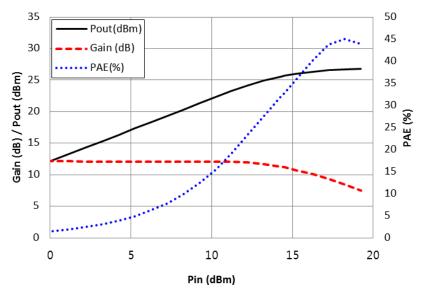
ELECTRICAL CHARACTERISTIC (V_{ds} = 8V, T_a = 25°C)

	PARAMETER/TEST CONDITIONS	TEST FREQUENCY	MINIMUM	TYPICAL	MAXIMUM	UNIT
P _{1dB}	Output Power @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\%$ I_{dss})	12 GHZ	24.0	26.0		dBm
F1dB	Output Power @ PldB (Vds - 8V, Ids - 50% Idss)	18 GHZ	23.8	25.8		иын
C .	Cain @ D . (V. = 9V L = 500/ L)	12 GHZ	9.2	11.2		dB
G _{1dB}	Gain @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\% I_{dss}$)	18 GHZ	7.7	9.7		ив
PAE	DAT @ D (\/ - 0\/ - F00/ \)	12 GHZ		27		%
PAE	PAE @ P _{1dB} (V _{ds} = 8V, I _{ds} = 50% I _{dss})	18 GHZ		30		70

ELECTRICAL CHARACTERISTIC (V_{ds} = 6V, T_a = 25° C)

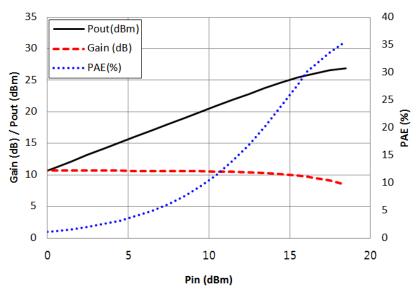

	PARAMETER/TEST CONDITIONS	TEST FREQUENCY	MINIMUM	TYPICAL	MAXIMUM	UNIT
P _{1dB}	Output Power @ P_{1dB} ($V_{ds} = 6V$, $I_{ds} = 50\%$ I_{dss})	12 GHZ	23.5	25.5		dBm
P1dB	Output Power @ PidB (Vds – 6V, ids – 50% idss)	18 GHZ	23.7	25.7		иын
G _{1dB}	Cain @ D (V 6V. L F00/ L.)	12 GHZ	9.0	11.0		dB
G1dB	Gain @ P_{1dB} ($V_{ds} = 6V$, $I_{ds} = 50\% I_{dss}$)	18 GHZ	7.3	9.3		иь
PAE	DAT @ D . (V CV 1 F00/ I.)	12 GHZ		33		%
PAE	PAE @ P _{1dB} (V _{ds} = 6V, I _{ds} = 50% I _{dss})	18 GHZ		40		70

MAXIMUM RATINGS (Ta = 25°C)

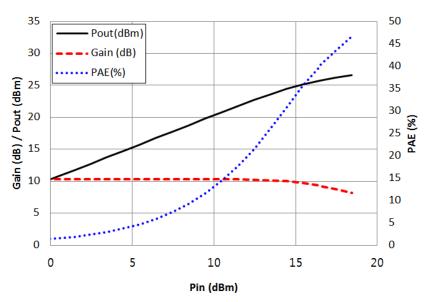

	PARAMETERS	ABSOLUTE	CONTINUOUS
V_{ds}	Drain-Source Voltage	12 V	8 V
V_{gs}	Gate-Source Voltage	-8 V	-4V
l _{ds}	Drain Current	l _{dss}	l _{dss}
I_{gsf}	Forward Gate Current	20 mA	3.2 mA
Pin	Input Power	23 dBm	@ 3dB compression
T_{ch}	Channel Temperature	175° C	150° C
T_{stg}	Storage Temperature	-60° C - 150° C	-60° C - 150° C
Pt	Total Power Dissipation	2.3 W	1.9 W

Exceeding any of the above Maximum Ratings will result in reduced MTTF and may cause permanent damage to the device

P_{in}_P_{out}/Gain, PAE (12 GHz)

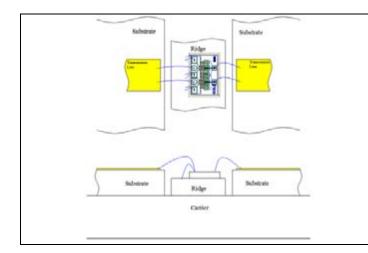


Freq. = 12 GHz, V_{ds} = 8 V, I_{ds} = 50% I_{dss}



Freq. = 12 GHz, V_{ds} = 6 V, I_{ds} = 50% I_{dss}

Pin_Pout/Gain, PAE (18GHz)



Freq. = 18 GHz, V_{ds} = 8 V, I_{ds} = 50% I_{dss}

Freq. = 18 GHz, V_{ds} = 6 V, I_{ds} = 50% I_{dss}

Wire Bonding Options

- · Bonding Wire information
- 1. Gate to input transmission line
 - Length and Height: 400 um and 250 um
 - Number of wires: 2
- 2. Drain to output transmission line
 - Length and Height: 350 um and 250 um
 - Number of wires: 2
- 3. Source to ground plate
 - Length and Height : 200 um x 250 um
 - Number of wires: 6

Note: The diameter of bonding wires: 1 mil

Proper ESD procedures should be followed when handling this device.

DIE ATTACH RECOMMENDATIONS:

BeRex recommends the "Eutectic" die attach using Au-Sn (80%-20%) pre-forms. The die attach station must have accurate temperature control, and the operation should be performed with parts no hotter than 300°C for less than 10 seconds. An inert forming gas (90% N₂-10% H₂) or clean, dry N₂ should be used.

HANDLING PRECAUTIONS:

GaAs FETs are very sensitive to and may be damaged by Electrostatic Discharge (ESD). Therefore, proper ESD precautions must be taken whenever you are handling these devices. It is critically important that all work surfaces, and assembly equipment, as well as the operator be properly grounded when handling these devices to prevent ESD damage.

STORAGE & SHIPPING:

BeRex's standard chip device shipping package consists of an antistatic "Gel-Pak", holding the chips, placed inside a sealed antistatic and moisture barrier bag. This packaging is designed to provide a reasonable measure of protection from both mechanical and ESD damage.

Chip devices should be stored in a clean, dry Nitrogen gas environment at room temperature until they are required for assembly. Only open the shipping package or perform die assembly in a work area with a class 10,000 or better clean room environment to prevent contamination of the exposed devices.

CAUTION:

THIS PRODUCT CONTAINS GALLIUM ARSENIDE (GaAs) WHICH CAN BE HAZARDOUS TO THE HUMAN BODY AND THE ENVIRONMENT. THEREFORE, IT MUST BE HANDLED WITH CARE AND IN ACCORDANCE WITH ALL GOVERNMENTAL AND COMPANY REGULATIONS FOR THE SAFE HANDLING AND DISPOSAL OF HAZARDOUS WASTE. DO NOT BURN, DESTROY, CUT, CRUSH OR CHEMICALLY DISSOLVE THE PRODUCT. DO NOT LICK THE PRODUCT OR IN ANY WAY ALLOW IT TO ENTER THE MOUTH. EXCLUDE THE PRODUCT FROM GENERAL INDUSTRIAL WASTE OR GARBAGE AND DISPOSE OF ONLY IN ACCORDANCE TO APPLICABLE LAWS AND/OR ORDINANCES.

DISCLAIMER

BEREX RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. BEREX DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN.

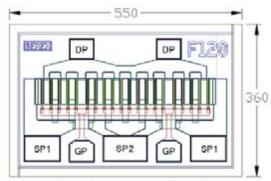
LIFE SUPPORT POLICY

BEREX PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES WITHOUT THE EXPRESS WRITTEN APPROVAL OF BEREX.

- 1. Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BCF120T

HIGH EFFICIENCY HETEROJUNCTION POWER FET CHIP (.3 μm x 1200 μm)


The BeRex BCF120T is a GaAs Power MESFET whose nominal 0.3 micron gate length and 1200 micron gate width make the product ideally suited to applications requiring high OIP3 linearity and low phase noise while providing high-gain and medium power from DC to 26.5 GHz. This product is well suited for either wideband or narrow-band applications. The BCF120T is produced using state of the art metallization and devices from each wafer are screened to insure reliability. These chips utilize SI_3N_4 passivation for increased reliability.

Product Features

- 28.0 dBm Typical Output Power
- 11.0 dB Typical Power Gain @ 12 GHz
- Low Phase Noise
- 0.3 X 1200 Micron Recessed Gate

Applications

- Commercial
- Military / Hi-Rel
- Test & Measurement

Chip dimensions: 550 X 360 microns Gate pad(GP): 60 X 55 microns Drain pad(DP): 60 X 50 microns Source pad1(SP1): 90 X 65 microns Source pad2(SP2): 110 X 63 microns

Chip thickness: 100 microns

ELECTRICAL CHARACTERISTIC (Ta = 25°C)

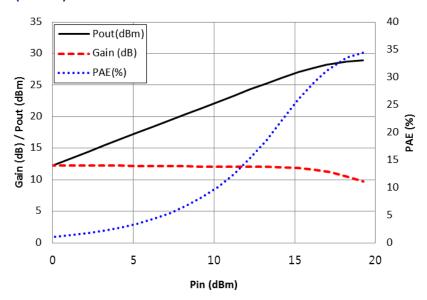
	PARAMETER/TEST CONDITIONS	MINIMUM	TYPICAL	MAXIMUM	UNIT
l _{dss}	Saturated Drain Current (Vgs = 0V, Vds = 3V)	200	340	440	mA
Gm	Transconductance (V _{ds} = 3V, V _{gs} = 50% I _{dss})	140	200		mS
Vp	Pinch-off Voltage ($I_{ds} = 300 \mu A$, $V_{ds} = 3V$)	-3.5	-2.0		V
BV _{gd}	Drain Breakdown Voltage (Ig = 1.2 mA, source open)		-15	-11	V
BV _{gs}	Source Breakdown Voltage (Ig = 1.2 mA, drain open)		-11	-7	V
R _{th}	Thermal Resistance (Au-Sn Eutectic Attach)		40		° C/W

BeRex, Inc. 3350 Scott Blvd. #61-01 Santa Clara, CA 95054 tel. (408) 452-5595

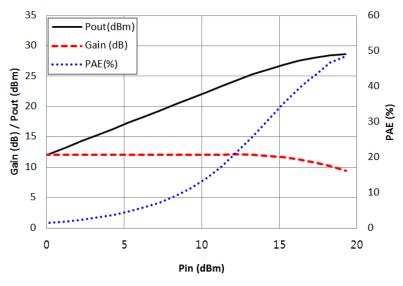
ELECTRICAL CHARACTERISTIC (V_{ds} = 8V, T_a = 25°C)

	PARAMETER/TEST CONDITIONS	TEST FREQUENCY	MINIMUM	TYPICAL	MAXIMUM	UNIT
P _{1dB}	Output Power @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\%$ I_{dss})	12 GHZ	26.0	28.0		dBm
F 1dB	Output Power @ Plas (Vas - 8V, las - 30% lass)	18 GHZ	25.9	27.9		иын
G _{1dB}	Gain @ P _{1dB} (V _{ds} = 8V, I _{ds} = 50% I _{dss})	12 GHZ	9.2	11.2		dB
G _{1dB}	Gain @ F _{1dB} (V _{ds} = 8V, I _{ds} = 30% I _{dss})	18 GHZ	7.3	9.3		uв
PAE	DAE @ D (\/. = 8\/ L. = E09/ L. \	12 GHZ		31		%
PAE	PAE @ P _{1dB} (V _{ds} = 8V, I _{ds} = 50% I _{dss})	18 GHZ		32		76

ELECTRICAL CHARACTERISTIC (V_{ds} = 6V, T_a = 25° C)

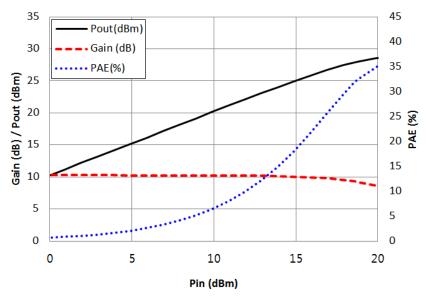

	PARAMETER/TEST CONDITIONS	TEST FREQUENCY	MINIMUM	TYPICAL	MAXIMUM	UNIT
P _{1dB}	Output Power @ P_{1dB} ($V_{ds} = 6V$, $I_{ds} = 50\%$ I_{dss})	12 GHZ	25.5	27.5		dBm
F1dB	Output Power @ PidB (Vds - 6V, ids - 50% idss)	18 GHZ	25.4	27.4		иын
6	Gain @ P _{1dB} (V _{ds} = 6V, I _{ds} = 50% I _{dss})	12 GHZ	9.0	11.0		dB
G _{1dB}	Gaill @ P1dB (Vds - 6V, Ids - 50% Idss)	18 GHZ	7.2	9.2		иь
PAE	DAE @ D . (\/. = 6\/ . = E0% . \	12 GHZ		41		%
PAE	PAE @ P_{1dB} ($V_{ds} = 6V$, $I_{ds} = 50\% I_{dss}$)	18 GHZ		39		70

MAXIMUM RATINGS (Ta = 25°C)

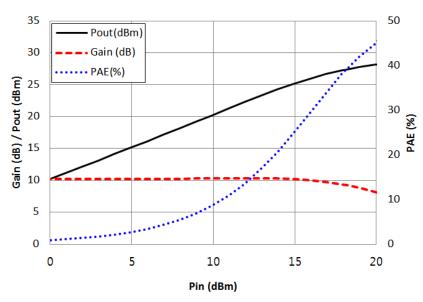

	PARAMETERS	ABSOLUTE	CONTINUOUS
V_{ds}	Drain-Source Voltage	12 V	8 V
V_{gs}	Gate-Source Voltage	-8 V	-4V
I_{ds}	Drain Current	l _{dss}	l _{dss}
I_{gsf}	Forward Gate Current	30 mA	4.8 mA
Pin	Input Power	25 dBm	@ 3dB compression
T_ch	Channel Temperature	175° C	150° C
T_{stg}	Storage Temperature	-60° C - 150° C	-60° C - 150° C
Pt	Total Power Dissipation	3.3 W	2.8 W

Exceeding any of the above Maximum Ratings will result in reduced MTTF and may cause permanent damage to the device

Pin_Pout/Gain, PAE (12 GHz)

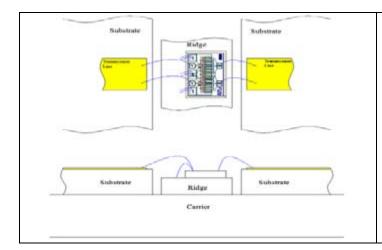


Freq. = 12 GHz, V_{ds} = 8 V, I_{ds} = 50% I_{dss}



Freq. = 12 GHz, V_{ds} = 6 V, I_{ds} = 50% I_{dss}

P_{in}_P_{out}/Gain, PAE (18 GHz)



Freq. = 18 GHz, V_{ds} = 8 V, I_{ds} = 50% I_{dss}

Freq. = 18 GHz, V_{ds} = 6 V, I_{ds} = 50% I_{dss}

Wire Bonding Options

- · Gold Bonding Wire information
- 1. Gate to input transmission line
 - Length and Height: 400 um and 250 um
 - Number of wires: 2
- 2. Drain to output transmission line
 - Length and Height: 350 um and 250 um
 - Number of wires: 2
- 3. Source to ground plate
 - Length and Height: 200 um x 250 um
 - Number of wires: 6

Note: The diameter of bonding wires: 1 mil

Proper ESD procedures should be followed when handling this device.

DIE ATTACH RECOMMENDATIONS:

BeRex recommends the "Eutectic" die attach using Au-Sn (80%-20%) pre-forms. The die attach station must have accurate temperature control, and the operation should be performed with parts no hotter than 300° C for less than 10 seconds. An inert forming gas (90% N₂-10% H₂) or clean, dry N₂ should be used.

HANDLING PRECAUTIONS:

GaAs FETs are very sensitive to and may be damaged by Electrostatic Discharge (ESD). Therefore, proper ESD precautions must be taken whenever you are handling these devices. It is critically important that all work surfaces, and assembly equipment, as well as the operator be properly grounded when handling these devices to prevent ESD damage.

STORAGE & SHIPPING:

BeRex's standard chip device shipping package consists of an antistatic "Gel-Pak", holding the chips, placed inside a sealed antistatic and moisture barrier bag. This packaging is designed to provide a reasonable measure of protection from both mechanical and ESD damage.

Chip devices should be stored in a clean, dry Nitrogen gas environment at room temperature until they are required for assembly. Only open the shipping package or perform die assembly in a work area with a class 10,000 or better clean room environment to prevent contamination of the exposed devices.

CAUTION:

THIS PRODUCT CONTAINS GALLIUM ARSENIDE (GaAs) WHICH CAN BE HAZARDOUS TO THE HUMAN BODY AND THE ENVIRONMENT. THEREFORE, IT MUST BE HANDLED WITH CARE AND IN ACCORDANCE WITH ALL GOVERNMENTAL AND COMPANY REGULATIONS FOR THE SAFE HANDLING AND DISPOSAL OF HAZARDOUS WASTE. DO NOT BURN, DESTROY, CUT, CRUSH OR CHEMICALLY DISSOLVE THE PRODUCT. DO NOT LICK THE PRODUCT OR IN ANY WAY ALLOW IT TO ENTER THE MOUTH. EXCLUDE THE PRODUCT FROM GENERAL INDUSTRIAL WASTE OR GARBAGE AND DISPOSE OF ONLY IN ACCORDANCE TO APPLICABLE LAWS AND/OR ORDINANCES.

DISCLAIMER

BEREX RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. BEREX DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN.

LIFE SUPPORT POLICY

BEREX PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES WITHOUT THE EXPRESS WRITTEN APPROVAL OF BEREX.

- 1. Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BCF240T

HIGH EFFICIENCY HETEROJUNCTION POWER FET CHIP (.3 μm x 2400 μm)

The BeRex BCF240T is a GaAs Power MESFET whose nominal 0.3 micron gate length and 2400 micron gate width make the product ideally suited to applications requiring high OIP3 linearity and low phase noise while providing high-gain and medium power from DC to 26.5 GHz. This product is well suited for either wideband or narrow-band applications. The BCF240T is produced using state of the art metallization and devices from each wafer are screened to insure reliability. These chips utilize SI_3N_4 passivation for increased reliability.

Product Features

- 30.4 dBm Typical Output Power
- 9.8 dB Typical Power Gain @ 12 GHz
- Low Phase Noise
- 0.3 X 2400 Micron Recessed Gate

Applications

- Commercial
- Military / Hi-Rel
- Test & Measurement

Chip dimensions: 970 x 300 microns Gate pad(GP): 60 x 55 microns Drain pad(DP): 60 x 50 microns Source pad(sPP): 110 x 65 microns Source pad(sPP): 110 x 65 microns Chip thickness: 100 microns

DC CHARACTERISTIC ($T_a = 25^{\circ}$ C)

PARAMETER/TEST CONDITIONS		MINIMUM	TYPICAL	MAXIMUM	UNIT
l _{dss}	Saturated Drain Current (Vgs = 0V, Vds = 2V)	480	720	960	mA
Gm	Transconductance ($V_{ds} = 3V$, $V_{gs} = 50\% I_{dss}$)		400		mS
Vp	Pinch-off Voltage (I_{ds} = 2400 μ A, V_{ds} = 3V)	-3.5	-2.0		V
BV_gd	Drain Breakdown Voltage (Ig = 2.4 mA, source open)		-15	-11	V
BV _{gs}	Source Breakdown Voltage (Ig = 2.4 mA, drain open)		-10	-7	V
R _{th}	Thermal Resistance (Au-Sn Eutectic Attach)		23		° C/W

BeRex, Inc. 3350 Scott Blvd. #61-01 Santa Clara, CA 95054 tel. (408) 452-5595

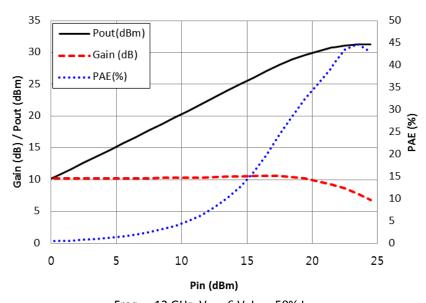
ELECTRICAL CHARACTERISTIC (V_{ds} = 8V, T_a = 25°C)

	PARAMETER/TEST CONDITIONS	TEST FREQUENCY	MINIMUM	TYPICAL	MAXIMUM	UNI T
P _{1dB}	Output Power @ P_{1dB} ($V_{ds} = 8V$, $I_{ds} = 50\%$ I_{dss})	12 GHZ	28.4	30.4		dBm
P1dB	Output Power @ Plas (Vas – 8V, las – 30% lass)	18 GHZ	28.1	30.1		ubili
G _{1dB}	Gain @ P _{1dB} (V _{ds} = 8V, I _{ds} = 50% I _{dss})	12 GHZ	7.8	9.8		dB
G _{1dB}	Gdii @ P _{1dB} (V _{ds} - 8V, I _{ds} - 50% I _{dss})	18 GHZ	5.7	7.7		иь
PAE	DAT @ D . (\/. = 9\/ L. = 50% L. \	12 GHZ		26.7		%
PAE	PAE @ P _{1dB} (V _{ds} = 8V, I _{ds} = 50% I _{dss})	18 GHZ		25.5		70

ELECTRICAL CHARACTERISTIC (V_{ds} = 6V, T_a = 25° C)

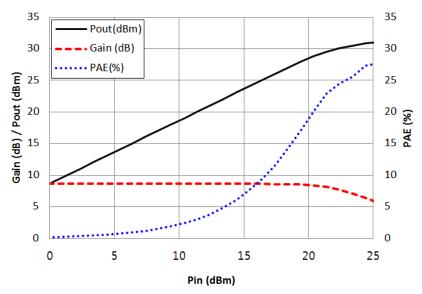
	PARAMETER/TEST CONDITIONS	TEST FREQUENCY	MINIMUM	TYPICAL	MAXIMUM	UNI T
P _{1dB}	Output Power @ P_{1dB} ($V_{ds} = 6V$, $I_{ds} = 50\%$ I_{dss})	12 GHZ	28.8	30.8		dBm
P1dB	Output Power @ Plab (Vds - 6V, lds - 50% ldss)	18 GHZ	28.1	30.1		ubili
G _{1dB}	Gain @ P _{1dB} (V _{ds} = 6V, I _{ds} = 50% I _{dss})	12 GHZ	7.1	9.1		dB
G _{1dB}	Gaill @ P1dB (Vds - 6V, Ids - 50% Idss)	18 GHZ	5.4	7.4		иь
DAF	DAT @ D . (V 6V. L 500/ L.)	12 GHZ		40		0/
PAE	PAE @ P_{1dB} ($V_{ds} = 6V$, $I_{ds} = 50\% I_{dss}$)	18 GHZ		33		%

MAXIMUM RATINGS (T_a = 25° C)

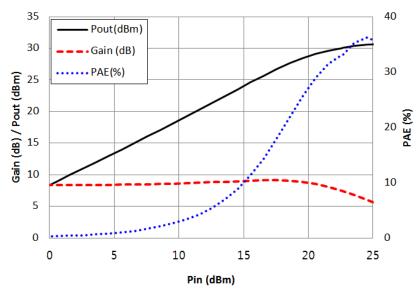

	PARAMETERS	ABSOLUTE	CONTINUOUS
V_{ds}	Drain-Source Voltage	12 V	8 V
V_{gs}	Gate-Source Voltage	-8 V	-4V
l _{ds}	Drain Current	l _{dss}	l _{dss}
I_{gsf}	Forward Gate Current	60 mA	9.6 mA
P _{in}	Input Power	29 dBm	@ 3dB compression
T_ch	Channel Temperature	175° C	150° C
T_{stg}	Storage Temperature	-60° C - 150° C	-60° C - 150° C
Pt	Total Power Dissipation	5.4 W	4.5 W

Exceeding any of the above Maximum Ratings will result in reduced MTTF and may cause permanent damage to the device

P_{in}_P_{out}/Gain, PAE (12 GHz)

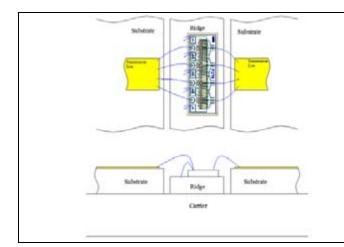


Freq. = 12 GHz, V_{ds} = 8 V, I_{ds} = 50% I_{dss}



Freq. = 12 GHz, V_{ds} = 6 V, I_{ds} = 50% I_{dss}

P_{in}_P_{out}/Gain, PAE (18 GHz)



Freq. = 18 GHz, V_{ds} = 8 V, I_{ds} = 50% I_{dss}

Freq. = 18 GHz, V_{ds} = 6 V, I_{ds} = 50% I_{dss}

Wire Bonding Options

- Gold Bonding Wire information
- 1. Gate to input transmission line
 - Length and Height: 400 um and 250 um
 - Number of wires: 4
- 2. Drain to output transmission line
 - Length and Height: 350 um and 250 um
 - Number of wires: 4
- 3. Source to ground plate
 - Length and Height: 200 um x 250 um
 - Number of wires: 10

Note: The diameter of bonding wires: 1 mil

Proper ESD procedures should be followed when handling this device.

DIE ATTACH RECOMMENDATIONS:

BeRex recommends the "Eutectic" die attach using Au-Sn (80%-20%) pre-forms. The die attach station must have accurate temperature control, and the operation should be performed with parts no hotter than 300°C for less than 10 seconds. An inert forming gas (90% N₂-10% H₂) or clean, dry N₂ should be used.

HANDLING PRECAUTIONS:

GaAs FETs are very sensitive to and may be damaged by Electrostatic Discharge (ESD). Therefore, proper ESD precautions must be taken whenever you are handling these devices. It is critically important that all work surfaces, and assembly equipment, as well as the operator be properly grounded when handling these devices to prevent ESD damage.

STORAGE & SHIPPING:

BeRex's standard chip device shipping package consists of an antistatic "Gel-Pak", holding the chips, placed inside a sealed antistatic and moisture barrier bag. This packaging is designed to provide a reasonable measure of protection from both mechanical and ESD damage.

Chip devices should be stored in a clean, dry Nitrogen gas environment at room temperature until they are required for assembly. Only open the shipping package or perform die assembly in a work area with a class 10,000 or better clean room environment to prevent contamination of the exposed devices.

CAUTION:

THIS PRODUCT CONTAINS GALLIUM ARSENIDE (GaAs) WHICH CAN BE HAZARDOUS TO THE HUMAN BODY AND THE ENVIRONMENT. THEREFORE, IT MUST BE HANDLED WITH CARE AND IN ACCORDANCE WITH ALL GOVERNMENTAL AND COMPANY REGULATIONS FOR THE SAFE HANDLING AND DISPOSAL OF HAZARDOUS WASTE. DO NOT BURN, DESTROY, CUT, CRUSH OR CHEMICALLY DISSOLVE THE PRODUCT. DO NOT LICK THE PRODUCT OR IN ANY WAY ALLOW IT TO ENTER THE MOUTH. EXCLUDE THE PRODUCT FROM GENERAL INDUSTRIAL WASTE OR GARBAGE AND DISPOSE OF ONLY IN ACCORDANCE TO APPLICABLE LAWS AND/OR ORDINANCES.

DISCLAIMER

BEREX RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. BEREX DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN.

LIFE SUPPORT POLICY

BEREX PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES WITHOUT THE EXPRESS WRITTEN APPROVAL OF BEREX.

- 1. Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labeling, can be reasonably expected to result in significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

RF MMIC Innovator

www.berex.com

Classification: Reflow Soldering Document Number: Reflow61110

Revision code: 0.1

Reflow Soldering Guide

for Surface Mount Devices

	Name	Date	Signature
Writer	BY KIM		
	JH Bae		ОК
Checked			
Approval	Dr. Yoo		ОК

Rev B61110 MMIC Innovator http://www.berex.com

Contents

RF	MMIC INNOVATOR	WWW.BEREX.COM
1.	REFLOW SOLDERING GUIDE FOR SURFACE MOUI	NT DEVICES
2.	FIGURE 1. TEMPERATURE PROFILE FOR INFRARE	D OR CONVECTION
	REFLOW	
3.	TABLE 1. REFLOW PROFILE	

1. Reflow Soldering Guide for Surface Mount Devices

This technical note provides general guidelines for a solder reflow process for BeRex surface mount products. The data used in this document is based on IPC/JEDEC standards. The reflow process consists of applying a Pb-free solder paste to a circuit board, placing devices onto the paste, and then conveying the board through an oven with successive heating elements of varying temperatures. In the oven, each board typically goes through the following stages:

- Gradual preheating
- Flux activation
- Reflow
- Controlled cooling process

The maximum temperature, the rate of heating, the time a device spends at each temperature, controlled heating, and controlled cooling are critical parameters for effective soldering.

Figure 1 and Table 1 show a sample temperature profile compliant to JEDEC standards. Different board designs use different number and types of devices, solder paste, reflow ovens, and circuit boards. No single temperature profile works for all possible combinations. One can use this example as a generic target to set up its own reflow process. Reflow process should adhere to the JEDEC profile limits as well as specifications and recommendations from solder paste manufacturer to avoid damaging the device and create a reliable solder joint.

2. Figure 1. Temperature Profile for Infrared or Convection Reflow

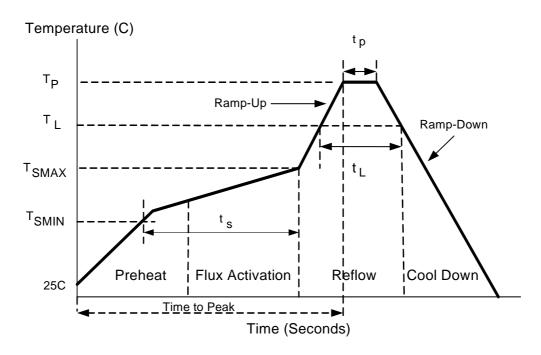


Figure 1. Temperature Profile for Infrared or Convection Reflow

3. Table 1. Reflow Profile

Parameter	Description	Pb-Free Package
Ramp-Up	Average Ramp-Up Rate (T _{SMAX} to T _p)	3 °C/second max.
T _{SMIN}	Preheat Peak Min. Temperature	150 °C
T _{SMAX}	Preheat Peak Max. Temperature	200 °C
Тр	Max. Reflow Temperature	260 (+0/-5) °C
T _s	Time between T _{SMIN} and T _{SMAX}	60-180 seconds
TL	Solder Melting Point	218 °C
t _L	Time Maintained above T _L	60-150 seconds
tp	Time within 5C of Peak Temperature	20-40 seconds
Ramp-Down	Ramp-down Rate	6 °C/second max.
Time to Peak	Time from 25 °C to Peak Temperature	8 minutes max.